Sains Malaysiana 42(8)(2013): 1081–1089
Geotechnical Characterisation of Marine Clay as
Potential Liner Material
(Pencirian Geoteknik Lempung
Marin sebagai Potensi Bahan Pelapik)
Z.A. Rahman*, W.Z.W. Yaacob, S.A. Rahim, T. Lihan, W.M.R. Idris
& W.N.F. Mohd Sani
School
Environmental & Natural Resource Sciences, Faculty of Science and
Technology
Universiti
Kebangsaan Malaysia, Bangi 43600 Selangor D.E. Malaysia
Received: 18
July 2012/Accepted: 22 February 2013
ABSTRACT
Natural clay is commonly used as a
liner material to contain landfill leachate from contaminating the environment.
A key characteristic of liner material is its hydraulic conductivity. It is
recommended that the hydraulic conductivity of the potential liner material
should be of 1×10-9 m/s or less. This paper presents
the geotechnical characteristics of marine clay that may be used as landfill
liner material. The tests were consistency index, compaction behaviour,
compressibility and hydraulic conductivity. The marine clay was dominated by
finer fraction of silt and clay (78%-88%) followed by sand (12%-22%). The clay
minerals commonly present were montmorillonite, kaolinite and illite as well as
quartz as the non-clay mineral. The consistency index for the liquid limit, wL and
plastic limit, wP were
56.6%-80.5% and 36%-45%, respectively. The plastic index, Ip of
the marine clay samples ranged from 19% to 37%. The permeability test indicated
that the hydraulic conductivity of the samples ranged between 1.10 × 10-9 and
2.44 × 10-9 m/s. The very low permeability
showed by the marine clay can be related to the presence of high content of
finer fraction. Compaction of marine clay samples resulted in maximum dry
density, ρdmax that
ranged between 1.5 and 1.6 g/cm3 and
optimum moisture content, wopt that ranged between
18.2% and 25%. During the consolidation of the marine clay, the hydraulic
conductivity decreased within the recommended permeability for landfill liners.
This study showed that some geotechnical characteristics of the studied marine clay
were in favour of being used as landfill liner material.
Keywords: Consistency index;
landfill; liner; marine clay; shear strength
ABSTRAK
Lempung semula jadi sering digunakan
sebagai bahan pelapik untuk menghalang pencemaran cecair larut resap tapak
pelupusan ke persekitaran. Ciri utama bahan pelapik adalah sifat ketelapannya.
Kekonduksian hidraulik yang disarankan bagi bahan berpotensi sebagai pelapik
seharusnya 1×10-9 m/s atau kurang. Kertas ini
menunjukkan ciri geoteknik lempung marin yang mungkin dapat digunakan sebagai
bahan pelapik tapak pelupusan. Ujian yang dilakukan adalah indeks ketekalan,
sifat pemadatan dan kekonduksian hidraulik. Lempung marin didominasi oleh
fraksi halus bersaiz lodak dan lempung (78%-88%) diikuti oleh pasir (12%-22%). Mineral
lempung yang sering hadir adalah monmorilonit, kaolinit dan ilit serta kuarza
sebagai mineral bukan lempung. Indeks kekonsistensi bagi had cecair, wL dan had plastik, wp masing-masing
adalah 56.6%-80.5% dan 36%-45%. Indeks keplastikan, IP sampel
lempung marin berjulat daripada 19 hingga 37%. Ujian ketelapan menunjukkan
kekonduksian hidraulik sampel berjulat antara 1.10 × 10-9 dan
2.44 × 10-9 m/s. Nilai ketelapan yang sangat
rendah yang ditunjukkan oleh lempung marin boleh dikaitkan dengan kehadiran kandungan
fraksi halus yang tinggi. Pemadatan sampel lempung marin menghasilkan
ketumpatan kering maksimum, ρdmax berjulat
1.5 - 1.6 g/cm3 dan
kandungan optimum lembapan, wopt berjulat antara 18.2% dan
25%. Semasa pengukuhan lempung marin, kekonduksian hidraulik menurun dalam
kebolehtelapan yang disyorkan bagi bahan pelapik tapak pelupusan. Kajian ini
menunjukkan ciri geoteknik lempung marin yang dikaji memihak sebagai bahan
pelapik tapak pelupusan.
Kata
kunci: Indeks ketekalan; kekuatan ricih; lempung marin; pelapik; tapak
pelupusan
REFERENCES
Ahn, H.S.
& Jo, H.Y. 2009. Influence of exchangeable cations on hydraulic
conductivity of compacted-bentonite. Applied Clay Science 44: 144-150.
Alamgir, M.,
McDonald, Ch., Roehl, K.E. & Ahsan, A. 2005. Integrated management and safe
disposal of municipal solid waste in least developed Asian countries. A
feasibility study. Khulna University of Engineering and Technology, Khulna,
Bangladesh. p. 83.
Arasan, S.
& Yetimoglu, T. 2006. Effect of leachate components on the consistency
limits of clay liners. 11th National Soil Mechanic and
Foundation Engineering Congress, Trabzon, Turkey pp. 439-445.
Arasan, S.
2010. Effect of chemicals on geotechnical properties of clay liners: A review. Research
Journal of Applied Sciences, Engineering and Technology 2(8): 765-775.
Bagchi,
A.C. 2004. Design of landfills and integrated solid waste management. In Landfill
Design. 3rd ed. United States of America: Wiley and Sons.
Basack, S.
& Purkayastha, R.D. 2009. Engineering properties of marine clays from the
eastern coast of India. Journal of Engineering and Technology Research 1(6):
109-114.
Belloo, A.A.
2012. Geotechnical evaluation of reddish brown tropical soils. Geotechnical
and Geology Engineering Journal 30: 481-498.
Benson, C.H.
& Trast, J.M. 1995. Hydraulic conductivity of thirteen compacted clays. Clays
and Clay Minerals 43(6): 669-681.
Bjerrum, L.
1973. Problems of soil mechanics and construction on soft clays: state of the
art report. Proceedings 8th International Conference on Soil Mechanics and
Foundation Engineering. Moscow, Russia
British
Standard Institution 1377. 1990a. Methods of Test for Soil for Civil
Engineering Purposes-Part 2: Classification Tests. BS1377, London.
British
Standard Institution 1377. 1990b. Methods of Test for Soil for Civil
Engineering Purposes-Part 4: Compaction-Related Tests. BS1377, London.
British
Standard Institution 1377. 1990c. Methods of Test for Soil for Civil
Engineering Purposes-Part 5: Compressibility, Permeability and Durability Tests.
BS1377, London.
British
Standard Institution 1377. 1990d. Methods of Test for Soil for Civil
Engineering Purposes-Part 7: Shear Strength Tests (Total Stress). BS1377,
London.
Chalermyanont,
T., Arrykul, S. & Charoenhaisong, N. 2008. Potential use of lateritic and
marine clay soils as landfill liners to retain heavy metals. Waste
Management 29: 117-127.
Chew, S.H.,
Kamrazzuman, H.M. & Lee, F.H. 2004. Physicochemical and engineering
behavior of cement treated clays. Journal of Geotechnical and Geoenvironmental
Engineering ASCE 130(7): 696-706.
Chung, S.G.,
Ryu, C.K., Jo, K.Y. & Huh, D.Y. 2007. Geological and geotechnical
characteristics of marine clays at the Busan new port. Marine Georesources
and Geotechnology 23(3): 235-251.
Du, Y.J.
& Hayashi, S. 2004. Some factors controlling the adsorption of potassium
ions on clayey soils. Applied Clays Science 27: 209-231.
Department
of Transport 1991. Specification for Highway Works. HMSO, London.
Dias, C.R.R.
& Alves, A.M.L. 2009. Geotechnical properties of the Cassino Beach mud. Continental
Shelf Research 29: 589-596.
EPA. 1990.
Compilation of Information on Alternative Barriers for Liner and Cover Systems.
EPA600-R-91-002. Prepared by Daniel, D.E. & Estornell, P.M. for Office of
Research and Development, Washington, DC.
Hyde, A.L.,
Yasuhara, K. & Hirao, K. 1993. Stability criteria for marine clay under
one-way cyclic loading. Journal of Geotechnical Engineering ASCE
119(11): 1771-1789.
Islam, M.R.,
Alamgir, M., Mohiuddin, K.M. & Hasan, K.M.M. 2008. Investigation of
physical properties of a selected soil to use as a clay liner in sanitary
landfill. Proceedings of National Seminar on Solid Waste
Management-WasteSafe. pp.167-174.
Itakura, T.,
Airey, D.W. & Dobrolot, J.Y.M. 2005. Geotechnical characterisation of
alluvial soils used to contain industrial liquid wastes. Bulletin of
Engineering Geology and Environments 64: 273-285.
Jones,
R.M., Murray, E.J. & Rix, D.W. 1993. Selection of clays for use as landfill
liners. Waste Disposal by Landfill. Proceedings Symposium Green ’93. pp.
433-438.
Kamon, M. & Katsumi, T. 2001. Clay
liners for waste landfill. In Clay Science for Engineering, edited by
Adachi, K. & Fukue, M. & Balkema, A.A. pp. 29-46.
Kooistra, J.M. & Tovey, N.K. 1994.
Effects of compaction on soil microstructure. In Soil Compaction in Crop
Poduction. Soane, B.D. & van Quwerkerk, C. Elsevier pp. 91-111.
Long, M. & Menkiti, C.O. 2007.
Geotecnical properties of Dublin Boulder clay. Geotechnique 57(7):
595-611.
Means, R.E. & Parchers, J.V. 1963. Physical
Properties of Soils. Ihio: Merrill Book Inc. Columbus.
Mitchell, J.K. 1993. Fundamentals of
Soil Behavior. 2nd ed. New York: John Wiley & Sons.
Murray, E.J., Rix, D.W. & Humphrey,
R.D. 1992. Clay lining to landfill sites. Quarterly Journal of Engineering
Geology 25(4): 371-376.
Ohtsubo, M., Egashira, K., Tanaka, H.
& Mishima, O. 2002. Clay minerals and geotechnical index properties of
marine clays in East Asia. Marine Georesources & Geotechnology 20(4):
223-235.
Pierce, J.W. & Siegel, F.R. 1969.
Quantification in clay minerals studies of sediment and sedimentary rock. Journal
of Sediment Petrology 9: 187-193.
Rao, D.K., Raju, R.P., Sowjanya, C. &
Rao, P. 2009. Laboratory studies on the properties of stabilised marine clay
from Kakinada Sea, Coast India. International Journal of Engineering Science
and Technology 3(1): 422-428.
Rao, D.K., Raju, R.P. & Kumar, R.A.
2011. Consolidation characteristics of treated marine clay for foundation bed
soils. International Journal of Engineering Science and Technology 3(2):
788-796.
Rominger, J.F. & Rutledge, P.C. 1952.
Use of soil mechanics data in correlation and interpretation of Lake Aggassiz
sediments. Journal of Geology 60(2): 160-180.
Sridharan, A., Rao, P.R. & Miura, N.
2004. Characterization of Ariake and other marine clays. In Proceedings of
International Symposium of Lowland Technology 1: 53-58.
Suneel, M., Park, L.K. & Im, J.C.
2008. Compressibility characteristics of Korean marine clay. Marine
Georesources & Geotechnology 26(2): 111-127.
Taha, M.T., Ahmed, J. & Asmirza, S.
2000. One-dimensional consolidation of Kelang clay. Pertanika Journal
Science & Technology 8(1): 19-29.
Tan, T.S., Goh, T.L. & Yong, K.Y.
2002. Properties of Singapore marine clay improved by cement mixing. Geotechnical
Testing Journal 25(4): 1-11.
Terzaghi, K., Peck, R. & Mesri, G.
1996. Soil Mechanics in Engineering Practice. 3rd ed. New York:
Wiley-Interscience, John Wiley and Sons, Inc.
Van Imple, W.F. 1998. Environmental
Geotechnics: ITC5 Activities-State of Art. In Proceedings of the 3rd
International Congress on Enviromental Geotechnics pp.1163-1187.
Yilmaz, I. 2000. Evaluation of shear
strength of clayey soils by using their liquidity index. Bulletin of
Engineering. Geology and Environments 59: 227–229.
Yong, R.N., Tan, B.K., Bently, S.P.,
Thomas, H.R., Yaacob, W.Z.W. & Hashim, A. 1998. Assessment of attenuational
capability of two clay soils via leaching column test. In: Proceedings of
the 3rd International Congress on Enviromental Geotechnics pp. 503-308.
Yong, R.N. & Phadungchewit, Y. 1993.
pH influence on selectively and retention of heavy metals in some clay soils. Canadian
Geotechnical Journal 30: 821-833.
*Corresponding author; email: zarah1970@ukm.my
|