Sains Malaysiana 42(8)(2013):
1131–1137
Targeted RNAi of the Mitogen-activated Protein Kinase
Pathway Genes in
Acute Myeloid Leukemia Cells
(RNAi Sasar Gen Tapak Jalan
Protein Kinase Diaktifkan-Mitogen dalam Mieloid Leukemia Akut)
M.R.
Mohd Hafiz1*, M.Z. Mazatulikhma2,
F.A. Mohd Faiz1 & M.S. Mohamed
Saifulaman1
1Faculty
of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam,
Selangor
Malaysia
2Institute
of Science, Universiti Teknologi MARA, 40450 Shah Alam, Selangor,
Malaysia
Received: 2 April 2012/Accepted: 16
December 2012
ABSTRACT
In this study, RNA interference (RNAi) was carried out as an experimental technique
to knockdown three mitogen-activated protein kinase (MAPK)
pathway genes, raf-1, mekk1 and mlk3 in acute myeloid leukemia (AML)
cells. Conventionally, RNAi knockdown experiments target a single gene for
functional studies or therapeutic purposes. We wanted to explore the potential
differences or similarities between targeting single targets or multiple target
genes in a single application. We achieved knockdown of gene expression levels
of between 40 and 60% for the RNAi experiments, with better knockdown observed
in single target gene experiments in comparison with the multiple target gene
experiment. Microarray analysis indicated that the transfection process had
most likely induced the immune response from the cells in every RNAi treatment.
This might indicate that when the MAPK signaling
pathway is partially blocked, in tandem with the immune response, the cells
will begin signaling for apoptosis leading to cellular death of the leukemic
cells.
Keywords: Acute myeloid leukemia;
immune response; MAPK pathway; RNA interference
ABSTRAK
Dalam kajian ini, penggangguan RNA (RNAi) digunakan sebagai
teknik uji kaji untuk menurunkan tiga gen protein kinase diaktifkan-mitogen (MAPK) iaitu gen raf1, mekk1 dan
mlk3 di dalam sel mieloid leukemia akut (AML).
Kebiasaannya, eksperimen RNAi dijalankan untuk menyasar satu gen sahaja demi
mengkaji fungsi atau peranan terapi. Kami telah mengkaji potensi perbezaan atau
persamaan antara menyasar satu atau lebih gen dalam satu aplikasi. Kami berjaya
mencapai penurunan pengekspresan gen daripada 40% hingga 60% dan RNAi kelihatan
lebih berkesan melalui penyasaran satu gen. Analisis mikroatur menunjukkan
bahawa proses transfeksi kemungkinan tinggi telah mengaruh tindak balas imun
dalam setiap perlakuan RNAi yang telah dilakukan. Ini mungkin memberi petunjuk
bahawa apabila pengisyaratan tapak jalan MAPK dihalang
separa, disertakan pengaruhan tindak balas imun, tapak laluan apoptosis akan
dimulakan dan mengakibatkan kematian sel kepada sel-sel leukemia.
Kata
kunci: Mieloid leukemia akut; penggangguan RNA; tapak jalan MAPK; tindak balas imun
REFERENCES
Alejandro,
E.U. & Johnson, J.D. 2008. Inhibition of Raf-1 alters multiple
downstream pathways to induce pancreatic β-cell apoptosis. Journal of
Biochemistry 238(4): 2401-2417.
Brancho, D.,
Ventura, J.J., Jaeschke, A., Doran, B., Flavell, R.A. & Davis, R.J. 2005.
Role of MLK3 in the regulation of mitogen-activated protein kinase signaling
cascades. Molecular & Cellular Biology 25(9): 3670-3681.
Chadee, D.N. & Kyriakis,
J.M. 2004. A novel role for Mixed Lineage Kinase 3 (MLK3) in B-Raf / Raf-1
activation and cell proliferation. Cell Cycle 3(10): e73-e75.
Chen, J.,
Miller, E.M. & Gallo, K.A. 2010. MLK3 is critical in breast cancer cell
migration and promotes a malignant phenotype in mammary epithelial cells. Oncogene 29: 4399-4411.
Cheng, J.C.,
Moore, T.B. & Sakamoto, K.M. 2003. RNA interference and human disease. Molecular
Genetic & Metabolism 80(1-2): 121-128.
Elbashir,
S.M., Lendeckel, W. & Tuschl, T. 2001. RNA interference is mediated by
21-22 nucleotide RNAs. Genes & Development 15(2): 188-200.
English,
J.M., Pearson, G., Hockenberry, T., Shivakumars, L., White, M.A. & Cobb,
M.H. 1999. Contribution of the ERK5/ MEK5 pathway to Ras/Raf signaling and
growth control. The Journal of Biological Chemistry 274(44):
31588-31592.
Fire, A.,
Xu, S., Montgomery, M.K., Kostas, S.A., Driver, S.E. & Mello, C.C. 1998.
Potent and specific genetic interference by double-stranded RNA in Caenorhabditis
elegans. Nature 391(6669): 806-811.
Fuchs, S.Y.,
Adler, V., Pincus, M.R. & Ronai, Z. 1998. MEKK1/ JNK signaling stabilizes
and activates p53. Proceedings of the National Academy of Science 95:
10541-10546.
Gallagher,
E.D., Xu, S., Moomaw, C., Slaughter, C.A. & Cobb, M.H. 2002. Binding of
JNK/SAPK to MEKK1 is regulated by phosphorylation. The Journal of Biological
Chemistry 277(48): 45785-45792.
Gantier,
M.P., Tong, S., Behlke, M.A., Irving, A.T., Lappas, M., Nilsson, U.W., Latz,
E., McMillan, N.A.J. & Williams, B.R.G. 2010. Rational design of
immunostimulatory siRNAs. Molecular Therapy 18(4): 785-795.
Giuliano,
Jr. J.S., Lahni, P.M., Wong, H.R. & Wheeler, D.S. 2011. Extracellular heat
shock proteins: Alarmins for the host immune system. The Open Inflammation
Journal 4(Suppl 1-M6): 49-60.
Gregory, T.K., Wald, D.,
Chen, Y., Vermaat, J.M., Xiong, Y. & Tse, W. 2009. Molecular
prognostic markers for adult acute myeloid
leukemia with normal cytogenetics. Journal of Hematology and Oncology 2:
23.
Haferlach, T. 2008. Molecular genetic
pathways as therapeutic targets in acute myeloid leukaemia. Hematology 2008:
400-411.
Hirano, T., Shino, Y., Saito, T., Komoda,
F., Okutomi, Y., Takeda, A., Ishihara, T., Yamaguchi, T., Saisho, H. &
Shirasawa, H. 2002. Dominant negative MEKK1 inhibits survival of pancreatic
cancer cells. Oncogene 21: 5923-5928.
Hood, E. 2004. RNAi: What’s all the noise
about gene silencing?. Environmental Health Perspectives 112(4):
A224-A229.
Huang, D.W., Sherman, B.T. &
Lempicki, R.A. 2009. Systematic and integrative analysis of large gene lists
using DAVID Bioinformatics Resources. Nature Protocols 4(1): 44-57.
Kim, D.H. & Rossi, J.J. 2007. Strategies
for silencing human disease using RNA interference. Nature Reviews Genetic 8:
173-184.
Kim, H., Kojima, K., Swindle, C.S.,
Cotta, C.V., Huo, Y., Reddy, V. & Klug, C.A. 2008. FLT3-ITD cooperates with
inv (16) to promote progression to acute myeloid leukaemia. Blood 111(3):
1567-1574.
Kim, K.Y., Kim, B.C., Xu, Z. & Kim,
S.J. 2004. Mixed Lineage Kinase 3 (MLK3)-activated p38 MAP kinase mediates
transforming growth factor – β – induced apoptosis hepatoma
cells. The Journal of Biological Chemistry 279(28): 29478- 29484.
Kim, N.V. 2003. RNA interference in
functional genomics and medicine. Journal Korean Medical Science 18:
309-318.
Kingsley, D.M. 1994. The TGF-β
superfamily: New members, new receptors, and new genetic tests of function in
different organisms. Genes & Development 8: 133-146.
Maekawa, T., Shinagawa, T., Sano, Y.,
Sakuma, T., Nomura, S., Nagasaki, K., Miki, Y., Saito-Ohara, F., Inazawa, J.,
Kohno, T., Yokota, J. & Ishii, S. 2007. Reduced levels of ATF-2 predispose
mice to mammary tumors. Molecular & Cellular Biology 27(5):
1730-1744.
Minoo, P., Zlobec, I., Baker, K.,
Tornillo, L., Terraciano, L., Jass, J.R. & Lugli, A. 2007. Loss of raf-1
kinase inhibitor protein expression is associated with tumor progression and
metastasis in colorectal cancer. American Journal of Clinical Pathology 127: 820-827.
Sebolt-leopold, J.S., Dudley, D.T.,
Herrera, R. Becelaere, K.V., Wiland, A., Gowan, R.C., Tecle, H., Barrett, S.D.,
Bridges, A., Przybranowski, S., Leopold, W.R. & Saltiel, A.R. 1999.
Blockade of the MAP kinase pathway supresses growth of colon tumors in vivo. Nature Medicine 5: 810-816.
Sondarva, G., Kundu, C.N., Mehrotra, S.,
Mishra, R., Rangasamy, V., Sathyanarayana, P., Ray, R.S., Rana, B. & Rana,
A. 2010. TRAF2 – MLK3 interaction is essential for TNF – α
– induced MLK3 activation. Cell Research 20: 89-98.
Su, F., Li, H., Yan, C., Jia, B., Zhang,
J. & Chen, X. 2009. Depleting MEKK1 expression inhibits the ability of
invasion and migration of human pancreatic cancer cells. Journal Cancer
Research & Clinical Oncology 135: 1655-1663.
Sundstrom, C. & Nilsson, K. 1976.
Establishment and characterization of a human histiocytic lymphoma cell line
(U-937). International Journal of Cancer 17(5): 565-577.
Tallman, M.S., Gililand, D.G. & Rowe,
J.M. 2005. Drug therapy for acute myeloid leukemia. Blood 106:
1154-1163.
Tibbles, L.A., Ing, Y.L., Kiefer, F.,
Chan, J., Iscove, N., Woodgett, J.R. & Lassam, N.J. 1996. MLK-3 activates
the SAPK/JNK and p38/RK pathways via SEK1 and MKK3/6. The EMBO Journal 15(24):
7026-7035.
Towatari, M., Iida, H., Tanimoto, M.,
Iwata, H., Hamaguchi, M. & Saito, H. 1997. Constitutive activation
of mitogen-activated protein kinase pathway in acute leukemia cells. Leukemia 11: 479-484.
Weissinger, E.M., Eissner, G., Grammar,
C., Fackler, S., Haefner, B., Yoon, L.S., Lu, K.S., Bazarov, A., Sedivy, J.M.,
Mischak, H. & Kolch, W. 1997. Inhibition of Raf-1 kinase by cyclic AMP
agonists causes apoptosis in v-abl transformed cells. Molecular and Cellular
Biology 17(6): 3229-3241.
Whelan, J. 2005. First clinical data on
RNAi. Drug Discovery Today 10: 1014-1015.
Zamore, P.D., Tuschl, T., Sharp, P.A.
& Bartel, D.P. 2000. RNAi: Double-stranded RNA directs the ATP-dependent
cleavage of mRNA at 21-23 nucleotide intervals. Cell 101: 25-33.
*Corresponding author; email: hafizrothi@salam.uitm.edu.my
|