Sains Malaysiana 42(8)(2013):
1151–1157
Optical Properties of Poly(
9,9’-di-n-octylfluorenyl-2.7-diyl)/Amorphous SiO2
Nanocomposite Thin Films
(Sifat Optik Filem Nipis
Nanokomposit Poli( 9,9’-di-n-ostilfluorenyl-2.7-diil)/Amorfus SiO2)
Mohammad Hafizuddin Haji Jumali1*, Bandar Ali Al-Asbahi1,2& Chi Chin Yap1, Muhamad Mat Salleh3& Mohamad Saleh AlSalhi4
1School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia
43600 UKM Bangi, Selangor, D.E. Malaysia
2Department of Physics, Faculty of Science, Sana’a University, Yemen
3Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia
43600 UKM Bangi, Selangor, D.E. Malaysia
4Department of Physics and Astronomy, Laser Group, College of Science
King Saud University, Saudi Arabia
Received: 11
June 2012 / Accepted: 2 February 2013
ABSTRACT
Identified as potential materials
for optoelectronic applications, the polymer/inorganic nanocomposites are
actively studied. In this work, the effect of amorphous silica nanoparticles (NPs) content on the optical
properties of Poly (9,9’-di-n-octylfluorenyl- 2.7-diyl) (PFO)
thin films has been investigated. Different ratios of PFO/SiO2 NPs composites have been
prepared using solution blending method. Then, the blends were spin-coated onto
glass substrates at 2000 rpm for 30 s and subsequently dried at room
temperature. XRD and TEM were used to determine the structural properties, while UV-Vis and PL spectrophotometers were employed to investigate the optical
properties of the films. XRD confirms
that there was no variation on structure of both PFO and SiO2 NPs
resulted from the blending process. TEM micrographs
display that majority of amorphous SiO2 NPs
were well coated with PFO. The
absorption spectra of the composite thin films were red-shifted, indicating the
increment in conjugation length of the PFO/SiO2 composite. In addition, the calculated values of the optical
energy gap, the width of the energy tails and vibronic spacing of the composite
films exhibited SiO2 content dependence.
Keywords: Absorption; energy gap;
energy tail; photoluminescence; vibronic spacing
ABSTRAK
Dikenal pasti sebagai bahan
berpotensi untuk kegunaan optoelektronik, nanokomposit polimer/bahan inorganik
sedang dikaji secara aktif. Dalam kajian ini kesan kandungan nanozarah amorfus
SiO2 ke atas sifat optik filem nipis poli(9,9’-di-n-ostilfluorenyl-2.7-diil)
(PFO) telah dikaji. Larutan PFO/SiO2 yang berbeza nisbah telah
disediakan menggunakan teknik adunan larutan. Kemudian, adunan dimendapkan ke
atas substrat kaca menggunakan teknik salutan berputar pada kelajuan 2000 ppm
selama 30 s dan seterusnya dikeringkan pada suhu bilik selama 1 jam. XRD dan TEM digunakan untuk pencirian struktur sementara spektrofotometer UV-Vis dan PL digunakan untuk mengkaji sifat optik filem yang disediakan.
Pencirian XRD tidak menunjukkan
sebarang perubahan struktur ke atas PFO dan
nanozarah SiO2 akibat dari proses adunan.
Mikrograf TEM menunjukkan nanozarah
amorfus SiO2 tersalut
oleh PFO. Berbanding spektrum
penyerapan filem PFO,
spektrum penyerapan untuk filem nipis nanokomposit mempamerkan anjakan merah,
menandakan pertambahan panjang konjugasi PFO/SiO2. Selain itu, nilai bagi
jurang tenaga, lebar ekor tenaga dan jarak vibronik oleh filem komposit juga
menunjukkan pergantungan kepada kandungan SiO2.
Kata
kunci: Ekor tenaga; fotoluminesen; jarak vibronik; jurang tenaga; penyerapan
REFERENCES
Al-Ani,
S.K.J., Al-Ramadin, Y., Ahmad, M.S., Zihlif, A.M., Volpe, M., Malineonico, M.,
Martuscelli, E. & Ragosta, G. 1999. The optical properties of
polymethylmethacrylate polymer dispersed liquid crystals. Polymer Testing 18(8):
611-619.
Assaka,
A.M., Rodrigues, P.C., De Oliveira, A.R.M., Ding, L., Hu, B., Karasz, F.E.
& Akcelrud, L. 2004. Novel fluorine containing polyfluorenes with efficient
blue electroluminescence. Polymer 45(21): 7071-7081.
Bajpai, M.,
Srivastava, R., Kamalasanan, M.N., Tiwari, R.S. & Chand, S. 2010. Charge
transport and microstructure in PFO: MEH-PPV polymer blend thin films. Synthetic
Metals 160(15-16): 1740-1744.
Carter,
S.A., Scott, J.C. & Brock, P.J. 1997. Enhanced luminance in polymer
composite light emitting devices. Applied Physics Letters 71:1145.
Dow, J.D.
& Redfield, D. 1970. Electroabsorption in semiconductors: The excitonic
absorption edge. Physical Review B 1(8): 3358-3371.
Dutta, K.
& De, S.K. 2006. Transport and optical properties of SiO2–polypyrrole
nanocomposites. Solid State Communications 140(3-4): 167-171.
Elliott,
S.R. 1998. The Physics and Chemistry of Solids. London: J. Wiley.
Ginger, D.S.
& Greenham, N.C. 1999. Charge separation in conjugated-polymer/nanocrystal
blends. Synthetic Metals 101(1-3): 425-428.
Hagler,
T.W., Pakbaz, K., Voss, K.F. & Heeger, A.J. 1991. Enhanced order and
electronic delocalization in conjugated polymers oriented by gel processing in
polyethylene. Physical Review B 44(16): 8652-8666.
Han, Z.,
Zhang, J., Yang, X., Zhu, H. & Cao, W. 2010. Synthesis and application in
solar cell of poly(3-Octylthiophene)/titania nanotubes composite. Organic
Electronics 11(8): 1449-1460.
Ho, P.K.H.
& Friend, R.H. 2002. Π-electronic and electrical transport properties
of conjugated polymer nanocomposites: Poly (P-Phenylenevinylene) with
homogeneously dispersed silica nanoparticles. The Journal of Chemical
Physics 116: 6782-6795.
Huang, Y.,
Qin, Y., Zhou, Y., Niu, H., Yu, Z-Z. & Dong, J-Y. 2010. Polypropylene/graphene
oxide nanocomposites prepared by in situ Ziegler−Natta
polymerization. Chemistry of Materials 22(13): 4096-4102.
Ibrahim, S.,
Ahmad, R. & Johan, M.R. 2012. Conductivity and optical studies of
plasticized solid polymer electrolytes doped with carbon nanotube. Journal
of Luminescence 132(1): 147-152.
Jafarzadeh, M., Rahman, I.A.
& Sipaut, C.S. 2009. Synthesis of silica nanoparticles by modified
sol–gel process: The effect of mixing modes of the reactants and drying
techniques. Journal of Sol-gel Science and Technology 50(3): 328-336.
Kickelbick, G. 2003. Concepts
for the incorporation of inorganic building blocks into organic polymers on a
nanoscale. Progress in Polymer Science 28(1): 83-114.
Kim, K-S. & Park, S-J.
2012. Influence of N-doped Tio2 on lithium ion conductivity of
porous polymeric electrolyte membrane containing LiClO4. Solid State Ionics 212:
18-25.
Liu, D., Teng, F., Xu, Z.,
Yang, S., Qian, L., He, Q., Wang, Y. & Xu, X. 2007. Enhanced brightness and
efficiency in organic light-emitting diodes using SiO2 as buffer
layer and electron-blocking layer. Journal of Luminescence 122-123:
656-659.
Liu, J., Shi, Y. & Yang,
Y. 2001. Improving the performance of polymer light-emitting diodes using
polymer solid solutions. Applied Physics Letters 79: 578-580.
Peng, F., Lu, L., Sun, H.,
Wang, Y., Liu, J. & Jiang, Z. 2005. Hybrid organic-inorganic membrane:
Solving the tradeoff between permeability and selectivity. Chemistry of
Materials 17(26): 6790-6796.
Pichler, K., Halliday, D.A.,
Bradley, D.D.C., Burn, P.L., Friend, R.H. & Holmes, A.B. 1993. Optical
spectroscopy of highly ordered poly (P-Phenylene Vinylene). Journal of
Physics: Condensed Matter 5: 7155-7172.
Raja, V., Sarma, A.K. &
Rao, V.V.R. 2003. Optical properties of pure and doped Pmma-CO-P4VPNO polymer
films. Materials Letters 57(30): 4678-4683.
Rozenberg, B.A. & Tenne,
R. 2008. Polymer-assisted fabrication of nanoparticles and nanocomposites. Progress
in Polymer Science 33(1): 40-112.
Tommalieh, M.J. & Zihlif,
A.M. 2010. Optical properties of polyimide/silica nanocomposite. Physica B:
Condensed Matter 405(23): 4750-4754.
Uragami, T., Matsugi, H.
& Miyata, T. 2005. Pervaporation characteristics of organic-inorganic
hybrid membranes composed of poly (vinyl alcohol-co-acrylic acid) and
tetraethoxysilane for water/ethanol separation. Macromolecules 38(20):
8440-8446.
Urbach, F. 1953. The
long-wavelength edge of photographic sensitivity and of the electronic
absorption of solids. Physical Review 92: 1324.
Yang, S.H., Le Rendu, P.,
Nguyen, T.P. & Hsu, C.S. 2007. Fabrication of MEH-PPV/SiO2. Reviews on
Advanced Materials Science 15: 144-149.
Yang, S.H., Nguyen, T.P., Le
Rendu, P. & Hsu, C.S. 2005. Optical and electrical investigations of poly
(P-Phenylene Vinylene)/ silicon oxide and poly (P-Phenylene Vinylene)/titanium
oxide nanocomposites. Thin Solid Films 471(1-2): 230-235.
*Corresponding author; email: hafizhj@ukm.my
|