Sains Malaysiana 42(9)(2013): 1293–1300
Boron
Removal from Aqueous Solution Using Curcumin-impregnated Activated Carbon
(Penyingkiran Boron daripada Larutan Akuas Menggunakan Karbon
Teraktif
Terkandung Kurkumin)
Azhar Abdul Halim*, Nor Alia Roslan, Nor Shamsiah Yaacub
& Mohd. Talib Latif
School of Environmental and Natural Resource Sciences,
Faculty of Science and Technology
Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, D.E.
Malaysia
Received: 20 September 2012 / Accepted: 2 February 2013
ABSTRACT
This study was conducted to investigate the batch and fixed-bed
adsorption properties of boron on curcumin-impregnated activated carbon (Cur-AC).
The maximum boron removal was obtained at pH 5.5 and 120 min of contact time.
Langmuir and Freundlich isotherm models were applied and it was determined that
the experimental data conformed to both models. The Langmuir maximum adsorption
capacities for Cur-AC (5.00 mg/g) and regenerated Cur-AC
(3.61 mg/g) were obviously higher than the capacity for bare activated carbon
(0.59 mg/g). Kinetic studies indicated the adsorption of boron conformed to the
intra-particle model. The highest boron removal in fixed-bed column adsorption
was achieved up to 99% for the first 5 min at an inlet concentration of 890 mg/L
and a flow rate of 8.0 mL/min. Thomas and the Yoon-Nelson models gave better
fit to the experimental data. Cur-AC can be reused after elution
processes with slightly lower adsorption capacity.
Keywords: Adsorption; boron; curcumin; fixed bed column; turmeric
ABSTRAK
Kajian ini telah dijalankan untuk menentukan ciri-ciri penjerapan
boron secara kelompok dan secara turus lapisan tetap terhadap karbon teraktif
terubahsuai dengan kurkumin (Cur-AC). Penyingkiran maksimum
boron telah diperoleh pada pH 5.5 dan masa sentuhan selama 120 min. Hasil
kajian ini mendapati bahawa data uji kaji ini telah mematuhi kedua-dua model
isoterma penjerapan Langmuir dan Freundlich. Kapasiti penjerapan maksimum
Langmuir untuk Cur-AC (5.00 mg/g) dan Cur-AC regenerasi
(3.61 mg/g) adalah lebih tinggi berbanding kapasiti penjerapan bagi karbon
teraktif yang tidak diubah suai (0.59 mg/g). Kinetik kajian menunjukkan
penjerapan boron mematuhi model intra-partikel. Penyingkiran boron secara turus
penjerapan telah mencapai sehingga 99% untuk 5 min pertama (kepekatan influen
890 mg/L dan kadar aliran sebanyak 8.0 mL/min). Hasil kajian menunjukkan data
uji kaji lebih mematuhi Model Thomas dan Yoon-Nelson dan Cur-AC boleh
digunakan semula selepas proses regenerasi dengan kapasiti penjerapan yang
lebih rendah.
Kata kunci: Boron; kunyit; kurkumin; penjerapan;
turus lapisan tetap
REFERENCES
APHA, AWWA & WPCF. 2005. Standard Methods for the
Examination of Water and Wastewater.
Bohart, G.S. & Adams, E.Q. 1920. Behavior of charcoal
towards chlorine. J. Chem. Soc. 42: 7.
Bouguerra, W., Mnif, A., Hamrouni, B. & Dhahbi, M. 2008.
Boron removal by adsorption onto activated alumina and by reverse osmosis. Desalination 223(1-3): 31-37.
Çelik, Z.C., Can, B.Z. & Kocakerim, M.M. 2008. Boron
removal from aqueous solutions by activated carbon impregnated with salicylic
acid. Journal of Hazardous Materials 152(1): 415-422.
Cengeloglu, Y., Arslan, G., Tor, A., Kocak, I. & Dursun,
N. 2008. Removal of boron from water by using reverse osmosis. Separation and
Purification Technology 64(2): 141-146.
Cengeloglu, Y., Tor, A., Arslan, G., Ersoz, M. & Gezgin,
S. 2007. Removal of boron from aqueous solution by using neutralized red mud. Journal
of Hazardous Materials 142(1-2): 412-417.
Chen, W., Parette, R., Zou, J., Cannon, F.S. & Dempsey,
B.A. 2007. Arsenic removal by iron-modified activated carbon. Water Research 41(9): 1851-1858.
Chien, S.H. & Clayton, W.R. 1980. Application of Elovich
equation to the kinetics of phosphate release and sorption in soils. Sci.
Soc. Am. J. 44: 4.
Chiou, M.S. & Li, H.Y. 2003. Adsorption behavior of
reactive dye in aqueous solution on chemical cross-linked chitosan beads. Chemosphere 50(8): 1095-1105.
Chong, M.F., Lee, K.P., Chieng, H.J. & I.I. Syazwani
Binti Ramli 2009. Removal of boron from ceramic industry wastewater by
adsorption–flocculation mechanism using palm oil mill boiler (POMB)
bottom ash and polymer. Water Research 43(13): 3326-3334.
Halim, A.A., 2012. Boron removal from aqueous solutions
using curcumin-aided electrocoagulation. Middle-East Journal of Scientific
Research 11(5): 583-588.
Halim, A.A., Thaldiri, N.H., Awang, N. & Latif, M.T.
2012. Removing boron from an aqueous solution using turmeric extract- aided
coagulation-flocculation. American Journal of Environmental Sciences 8(3):
322-327.
Kabay, N., Arar, O., Acar, F., Ghazal, A., Yuksel, U. &
Yuksel, M. 2008. Removal of boron from water by electrodialysis: Effect of feed
characteristics and interfering ions. Desalination 223(1-3): 63-72.
Lagergren, S. 1898. About the theory of so-called adsorption
of soluble substances. Kungliga Svenska Vetenskapsakademiens Handlingar 24:
39.
Martín-Esteban, A., Fernández, P. & Cámara, C. 1996. New
design for the on-line solid-phase extraction of pesticides using membrane extraction
disk material and liquid chromatography in environmental waters. Journal of
Chromatography A 752(1-2): 291-297.
McKay, G., Ho, Y.S. & Ng, J.C.Y. 1999. Biosorption of
copper from waste waters: A review. Separation and Purification Technology 28:
38.
Mottez, F., Adam, J.C., Heron, A., Kasthurirengan, S. &
Hofmann, A. 1998. Development of boron reduction system for sea water
desalination. Desalination 118: 25-33.
Nadav, N., Priel, M. & Glueckstern, P. 2005. Boron
removal from the permeate of a large SWRO plant in Eilat. Desalination 185(1-3):
121-129
Nor Hasleda Mamat, A., Azhar Abdul, H. & Muhammad Ikram,
A.W. 2011. Boron removal from aqueous solutions using composite adsorbent based
on carbon-mineral. Sains Malaysiana 40(11): 1271-1276.
Owlad, M., Aroua, M.K. & Wan Daud, W.M.A. 2010.
Hexavalent chromium adsorption on impregnated palm shell activated carbon with
polyethyleneimine. Bioresource Technology 101(14): 5098-5103.
Özacar, M. & Şengil, İ.A. 2005. Adsorption of
metal complex dyes from aqueous solutions by pine sawdust. Bioresource
Technology 96(7): 791-795.
Özacar, M., Şengil, İ.A. & Türkmenler, H.
2008. Equilibrium and kinetic data, and adsorption mechanism for adsorption of
lead onto valonia tannin resin. Chemical Engineering Journal 143(1-3):
32-42.
Ozturk, N. & Kavak, D. 2005. Adsorption of boron from
aqueous solutions using fly ash: Batch and column studies. J. Hazard. Mat. B127:
81-88.
Polat, H., Vengosh, A., Pankratov, I. & Polat, M. 2004.
A new methodology for removal of boron from water by coal and fly ash. Desalination 164(2): 173-188.
Şahin, S. 2002. A mathematical relationship for the
explanation of ion exchange for boron adsorption. Desalination 143(1):
35-43.
Simonnot, M-O., Castel, C., NicolaÏ, M., Rosin, C., Sardin,
M. & Jauffret, H. 2000. Boron removal from drinking water with a boron
selective resin: Is the treatment really selective. Water Research 34(1):
109-116.
Sivakumar, P. & Palanisamy, P.N. 2009. Adsorptive
removal of reactive and direct dyes using non-conventional adsorbent- Column
studies. Sci. Ind. Res. 894-899.
Spicer, G.S. & Strickland, J.D.H. 1952. Compounds of
curcumin and boric acid. Part I: The structure of robrocurcumin. J. Chem.
Soc. (London): 4650-4653.
Thomas, H.C. 1944. Heterogeneous ion exchange in a flowing
system. J. Am. Chem. Soc. 66(10): 1664-1666.
Weber, W.J. & Morris, J.C. 1963. Kinetics of adsorption
on carbon solution. J. Sanit. Eng. Div. Am. Soc. Civ. Eng. 44: 28.
Y?lmaz, A.E., Boncukcuoglu, R., Y?lmaz, M.T. &
Kocakerim, M.M. 2005. Adsorption of boron from boron-containing wastewaters by
ion exchange in a continuous reactor. Journal of Hazardous Materials 117(2-3):
221-226.
Yoon, Y.H. & Nelson, J.H. 1984. Application of gas
adsorption kinetics I. A theoretical model for respirator cartridge service
life. American Industrial Hygiene Association Journal 45(8): 509-516.
*Corresponding
author; e-mail: azharhalim@ukm.my
|