Sains Malaysiana 42(9)(2013): 1293–1300

 

Boron Removal from Aqueous Solution Using Curcumin-impregnated Activated Carbon

(Penyingkiran Boron daripada Larutan Akuas Menggunakan Karbon Teraktif

Terkandung Kurkumin)

 

Azhar Abdul Halim*, Nor Alia Roslan, Nor Shamsiah Yaacub & Mohd. Talib Latif

School of Environmental and Natural Resource Sciences, Faculty of Science and Technology

Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, D.E. Malaysia

 

Received: 20 September 2012 / Accepted: 2 February 2013

 

ABSTRACT

This study was conducted to investigate the batch and fixed-bed adsorption properties of boron on curcumin-impregnated activated carbon (Cur-AC). The maximum boron removal was obtained at pH 5.5 and 120 min of contact time. Langmuir and Freundlich isotherm models were applied and it was determined that the experimental data conformed to both models. The Langmuir maximum adsorption capacities for Cur-AC (5.00 mg/g) and regenerated Cur-AC (3.61 mg/g) were obviously higher than the capacity for bare activated carbon (0.59 mg/g). Kinetic studies indicated the adsorption of boron conformed to the intra-particle model. The highest boron removal in fixed-bed column adsorption was achieved up to 99% for the first 5 min at an inlet concentration of 890 mg/L and a flow rate of 8.0 mL/min. Thomas and the Yoon-Nelson models gave better fit to the experimental data. Cur-AC can be reused after elution processes with slightly lower adsorption capacity.

 

Keywords: Adsorption; boron; curcumin; fixed bed column; turmeric

 

ABSTRAK

Kajian ini telah dijalankan untuk menentukan ciri-ciri penjerapan boron secara kelompok dan secara turus lapisan tetap terhadap karbon teraktif terubahsuai dengan kurkumin (Cur-AC). Penyingkiran maksimum boron telah diperoleh pada pH 5.5 dan masa sentuhan selama 120 min. Hasil kajian ini mendapati bahawa data uji kaji ini telah mematuhi kedua-dua model isoterma penjerapan Langmuir dan Freundlich. Kapasiti penjerapan maksimum Langmuir untuk Cur-AC (5.00 mg/g) dan Cur-AC regenerasi (3.61 mg/g) adalah lebih tinggi berbanding kapasiti penjerapan bagi karbon teraktif yang tidak diubah suai (0.59 mg/g). Kinetik kajian menunjukkan penjerapan boron mematuhi model intra-partikel. Penyingkiran boron secara turus penjerapan telah mencapai sehingga 99% untuk 5 min pertama (kepekatan influen 890 mg/L dan kadar aliran sebanyak 8.0 mL/min). Hasil kajian menunjukkan data uji kaji lebih mematuhi Model Thomas dan Yoon-Nelson dan Cur-AC boleh digunakan semula selepas proses regenerasi dengan kapasiti penjerapan yang lebih rendah.

 

Kata kunci: Boron; kunyit; kurkumin; penjerapan; turus lapisan tetap

REFERENCES

APHA, AWWA & WPCF. 2005. Standard Methods for the Examination of Water and Wastewater.

Bohart, G.S. & Adams, E.Q. 1920. Behavior of charcoal towards chlorine. J. Chem. Soc. 42: 7.

Bouguerra, W., Mnif, A., Hamrouni, B. & Dhahbi, M. 2008. Boron removal by adsorption onto activated alumina and by reverse osmosis. Desalination 223(1-3): 31-37.

Çelik, Z.C., Can, B.Z. & Kocakerim, M.M. 2008. Boron removal from aqueous solutions by activated carbon impregnated with salicylic acid. Journal of Hazardous Materials 152(1): 415-422.

Cengeloglu, Y., Arslan, G., Tor, A., Kocak, I. & Dursun, N. 2008. Removal of boron from water by using reverse osmosis. Separation and Purification Technology 64(2): 141-146.

Cengeloglu, Y., Tor, A., Arslan, G., Ersoz, M. & Gezgin, S. 2007. Removal of boron from aqueous solution by using neutralized red mud. Journal of Hazardous Materials 142(1-2): 412-417.

Chen, W., Parette, R., Zou, J., Cannon, F.S. & Dempsey, B.A. 2007. Arsenic removal by iron-modified activated carbon. Water Research 41(9): 1851-1858.

Chien, S.H. & Clayton, W.R. 1980. Application of Elovich equation to the kinetics of phosphate release and sorption in soils. Sci. Soc. Am. J. 44: 4.

Chiou, M.S. & Li, H.Y. 2003. Adsorption behavior of reactive dye in aqueous solution on chemical cross-linked chitosan beads. Chemosphere 50(8): 1095-1105.

Chong, M.F., Lee, K.P., Chieng, H.J. & I.I. Syazwani Binti Ramli 2009. Removal of boron from ceramic industry wastewater by adsorption–flocculation mechanism using palm oil mill boiler (POMB) bottom ash and polymer. Water Research 43(13): 3326-3334.

Halim, A.A., 2012. Boron removal from aqueous solutions using curcumin-aided electrocoagulation. Middle-East Journal of Scientific Research 11(5): 583-588.

Halim, A.A., Thaldiri, N.H., Awang, N. & Latif, M.T. 2012. Removing boron from an aqueous solution using turmeric extract- aided coagulation-flocculation. American Journal of Environmental Sciences 8(3): 322-327.

Kabay, N., Arar, O., Acar, F., Ghazal, A., Yuksel, U. & Yuksel, M. 2008. Removal of boron from water by electrodialysis: Effect of feed characteristics and interfering ions. Desalination 223(1-3): 63-72.

Lagergren, S. 1898. About the theory of so-called adsorption of soluble substances. Kungliga Svenska Vetenskapsakademiens Handlingar 24: 39.

Martín-Esteban, A., Fernández, P. & Cámara, C. 1996. New design for the on-line solid-phase extraction of pesticides using membrane extraction disk material and liquid chromatography in environmental waters. Journal of Chromatography A 752(1-2): 291-297.

McKay, G., Ho, Y.S. & Ng, J.C.Y. 1999. Biosorption of copper from waste waters: A review. Separation and Purification Technology 28: 38.

Mottez, F., Adam, J.C., Heron, A., Kasthurirengan, S. & Hofmann, A. 1998. Development of boron reduction system for sea water desalination. Desalination 118: 25-33.

Nadav, N., Priel, M. & Glueckstern, P. 2005. Boron removal from the permeate of a large SWRO plant in Eilat. Desalination 185(1-3): 121-129

Nor Hasleda Mamat, A., Azhar Abdul, H. & Muhammad Ikram, A.W. 2011. Boron removal from aqueous solutions using composite adsorbent based on carbon-mineral. Sains Malaysiana 40(11): 1271-1276.

Owlad, M., Aroua, M.K. & Wan Daud, W.M.A. 2010. Hexavalent chromium adsorption on impregnated palm shell activated carbon with polyethyleneimine. Bioresource Technology 101(14): 5098-5103.

Özacar, M. & Şengil, İ.A. 2005. Adsorption of metal complex dyes from aqueous solutions by pine sawdust. Bioresource Technology 96(7): 791-795.

Özacar, M., Şengil, İ.A. & Türkmenler, H. 2008. Equilibrium and kinetic data, and adsorption mechanism for adsorption of lead onto valonia tannin resin. Chemical Engineering Journal 143(1-3): 32-42.

Ozturk, N. & Kavak, D. 2005. Adsorption of boron from aqueous solutions using fly ash: Batch and column studies. J. Hazard. Mat. B127: 81-88.

Polat, H., Vengosh, A., Pankratov, I. & Polat, M. 2004. A new methodology for removal of boron from water by coal and fly ash. Desalination 164(2): 173-188.

Şahin, S. 2002. A mathematical relationship for the explanation of ion exchange for boron adsorption. Desalination 143(1): 35-43.

Simonnot, M-O., Castel, C., NicolaÏ, M., Rosin, C., Sardin, M. & Jauffret, H. 2000. Boron removal from drinking water with a boron selective resin: Is the treatment really selective. Water Research 34(1): 109-116.

Sivakumar, P. & Palanisamy, P.N. 2009. Adsorptive removal of reactive and direct dyes using non-conventional adsorbent- Column studies. Sci. Ind. Res. 894-899.

Spicer, G.S. & Strickland, J.D.H. 1952. Compounds of curcumin and boric acid. Part I: The structure of robrocurcumin. J. Chem. Soc. (London): 4650-4653.

Thomas, H.C. 1944. Heterogeneous ion exchange in a flowing system. J. Am. Chem. Soc. 66(10): 1664-1666.

Weber, W.J. & Morris, J.C. 1963. Kinetics of adsorption on carbon solution. J. Sanit. Eng. Div. Am. Soc. Civ. Eng. 44: 28.

Y?lmaz, A.E., Boncukcuoglu, R., Y?lmaz, M.T. & Kocakerim, M.M. 2005. Adsorption of boron from boron-containing wastewaters by ion exchange in a continuous reactor. Journal of Hazardous Materials 117(2-3): 221-226.

Yoon, Y.H. & Nelson, J.H. 1984. Application of gas adsorption kinetics I. A theoretical model for respirator cartridge service life. American Industrial Hygiene Association Journal 45(8): 509-516.

 

*Corresponding author; e-mail: azharhalim@ukm.my

 

 

previous