Sains Malaysiana 42(9)(2013): 1319–1325
Performance
Study of Air-based Photovoltaic-thermal (PV/T) Collector
with Different
Designs
of Heat Exchanger
(Kajian Prestasi Pengumpul Fotovoltan-terma (PV/T)
Berasaskan Udara dengan
Beberapa Reka Bentuk Penyerap Haba)
Mohd. Yusof Hj. Othman1*, Faridah Hussain2,
Kamaruzzman Sopian1, Baharuddin Yatim1 & Hafidz Ruslan1
1Institut Penyelidikan Tenaga Suria (SERI). Universiti
Kebangsaan Malaysia
43600 Bangi, Selangor, D.E. Malaysia
2Makmal Metrologi Kebangsaan, SIRIM Berhad, 43900 Sepang, Selangor,
D.E.Malaysia
Received: 26 November 2012/Accepted: 2 February 2013
ABSTRACT
Three different designs of heat exchanger, V-groove, honeycomb and
stainless steel wool had been tested to study their effectiveness in improving the
overall performance of a photovoltaic/thermal (PV/T) air base solar
collector. Heat exchangers were installed horizontally into the channel located
at the back side of the PV module. The system was tested at irradiance
of 828 W/m2 with
mass flow rate spanning from 0.02 kg/s to 0.13 kg/s. It was observed that at
mass flow rate of 0.11 kg/s, the maximum thermal efficiency of the system with
V-groove is 71%, stainless steel wool is 86% and honeycomb is 87%. The
electrical efficiency of the systems is 7.04%, 6.88% and 7.13%, respectively.
The experimental results showed that honeycomb design is the most efficient
design as heat exchanger. The design which is simple and compact is suitable
for building integration.
Keywords: Electrical efficiency; heat exchanger;
photovoltaic/thermal; thermal efficiency
ABSTRAK
Tiga penyerap haba dengan reka bentuk yang
berbeza iaitu lengkuk-V, sarang lebah dan serabut keluli tahan karat telah
diuji untuk mengkaji keberkesanannya bagi menambahbaik prestasi keseluruhan pengumpul
fotovoltan terma (PV/T) berasaskan udara. Kesemua penyerap haba
dipasang secara selari ke dalam ruang bawah modul fotovoltan. Sistem
telah diuji pada keamatan sinaran 828 W/m2 dan kadar aliran jisim udara 0.02 kg/s
hingga 0.13 kg/s. Didapati, pada kadar aliran jisim udara 0.11 kg/s, maksimum
kecekapan terma untuk sistem dengan lengkuk-V adalah 71%, sarang lebah 86% dan
serabut keluli tahan karat 87%. Manakala kecekapan elektrik
pula adalah 7.04%, 6.88% dan 7.13% masing-masing. Keputusan
uji kaji merumuskan bahawa penyerap haba berbentuk sarang lebah adalah reka
bentuk penyerap haba yang paling cekap. Reka bentuknya
ringkas dan padat serta sesuai untuk diintegrasikan ke dalam bangunan.
Kata kunci: Fotovoltan/terma; kecekapan
elektrik; kecekapan terma; penyerap haba
REFERENCES
Hasan, A.M. & Sumathy, K. 2010. Photovoltaic
thermal module concepts and their performance analysis: A review. Renewable
and Sustainable Energy Reviews 14: 1845-1859.
Hegazy, A.A. 2000. Comparative
study of the performances of four photovoltaic/thermal solar air collectors. Energy Conversion & Management 41: 861-881.
Hussain, F., Othman, M.Y., Yatim, B., Ruslan,
H., Sopian, K., Anuar, Z. & Khairuddin, S. 2011. Fabrication
and irradiance mapping of a low cost solar simulator for indoor testing of
solar collector. Journal of Solar Energy Engineering (ASME) 133(4):
044502 (1-4).
Hussain, F., Othman, M.Y., Yatim, B., Ruslan,
H., Sopian, K., Anuar, Z. & Khairuddin S. 2012. Comparison
study of air base photovoltaic/thermal (PV/T) collector with different design
of heat exchanger. Digital Proceeding of the World
Renewable Energy Forum, Denver, Colorado, USA.
Hussain, F., Othman, M.Y., Yatim, B., Ruslan,
H., Sopian, K., Anuar, Z. & Khairuddin, S. 2012. Performance
of a single pass air base photovoltaic/thermal solar collector with and without
hexagonal honeycomb heat exchanger. Digital
Proceeding of the World Renewable Energy Forum, Denver, Colorado, USA.
Jin, G.L. 2010. Evaluation of
single-pass photovoltaic-thermal air collector with rectangular tunnel
absorber. American Jounal of Applied Sciences 7(2): 277-282.
Kumar, R. & Rosen, M.A. 2011. A critical review of
photovoltaic– thermal solar collectors for air heating. Applied Energy 88: 3603-3614.
Othman, M.Y., Yatim, B., Sopian, K. &
Nazari, M. 2007. Performance studies on a
finned double-pass photovoltaic-thermal (PV/T) solar collector. Desalination 209: 43-49.
Othman, M.Y., Ruslan, H., Sopian, K. & Jin,
G.L. 2009. Performance study of
photovoltaic-thermal (PV/T) solar collector with ∇-Grooved absorber plate. Sains Malaysiana 38(4): 537-541.
Roslan, M.H., Othman, M.Y., Yatim, B. &
Sopian, K. 1998. Design an indoor testing
of a V-groove back-pass solar collector. World Renewable Energy Congress V:
2118-2121.
Sopian, K., Liu, H.T., Kakac, S. &
Veziroglu, T.N. 2000. Performance
of a double pass photovoltaic thermal solar collector suitable for solar drying
systems. Energy Conversion & Management 41: 353-365.
Sopian, K., Alghoul, M.A., Ebrahim, M.A.,
Sulaiman, M.Y. & Musa, E.A. 2009. Evaluation of thermal efficiency of double-pass solar collector
with porous–nonporous media. Renewable Energy 34: 640-645.
Tiwari, G.N., Mishra, R.K. & Solanki, S.C. 2011. Photovoltaic
modules and their applications: A review on thermal modeling. Applied Energy 88: 2287-2304.
Tonui, J.K. & Tripanagnostopoulos, Y. 2007. Air-cooled
PV/T solar collectors with low cost performance improvements. Solar
Energy 81(4): 498-511.
Zondag, H.A., de Vries, D.W., van Helden, W.G.J., van Zolingen,
R.J.C. & van Steenhoven, A.A. 2003. The yield of different combined
PV-thermal collector designs. Solar Energy 74: 253-269.
*Corresponding author; email: myho@ukm.my
|