Sains Malaysiana 42(9)(2013): 1333–1337
Preparation
of Porous Si (100) for Overgrown Cubic Layer: Morphological Investigation
(Penyediaan Si (100) Berliang untuk Pertumbuhan Lapisan Atas
Kubik: Kajian Morfologi)
M.E.A. Samsudin1, M. Ikram Md Taib1, N. Zainal1*, R. Radzali2 3, S. Yaakob4 & Z. Hassan1
1Nano-optoelectronics Research and Technology, School of Physics,
Universiti Sains Malaysia
11800, Penang, Malaysia
2Nano-optoelectronics Research and Technology, School of Physics,
Universiti Sains Malaysia
11800, Penang, Malaysia
3Fakulti Kejuruteraan Elektrik Universiti Teknologi
MARA 40450 Shah Alam, Selangor, D.E. Malaysia
4School of Chemical Sciences, Universiti Sains Malaysia,
11800, Penang, Malaysia
Received: 19 December 2012 /Accepted: 19 January
2013
ABSTRACT
A number of n-type Si (100) samples were prepared into porous
structures via electrochemical etching process, using an electrolyte solution; HF and
ethanol. The morphological properties of the samples were observed under
scanning electron microscope measurement. The results showed that the pore
density, pore uniformity distribution and pore size of the porous Si samples
increased with time of etching. In the next stage, H2O2 was
introduced into the electrolyte solution in order to investigate its effect on
the morphological properties of the porous Si. From the experiment, we found
that H2O2 gave finer porous
structure with highly symmetrical cubic shape on the surface. Besides, H2O2 promoted
smoother surface of the pore walls. Hence, the results showed that such porous
Si structure could be used as a better substrate for the subsequent layer, in
particular for the growth of cubic material.
Keywords: Hydrogen peroxide; morphological properties; porous
silicon
ABSTRAK
Beberapa jenis-n Si (100) sampel telah disediakan dalam bentuk
struktur berliang melalui proses punaran elektrokimia, menggunakan larutan
elektrolit; HF dan etanol. Sifat morfologi sampel tersebut telah
diperhatikan di bawah mikroskop elektron imbasan. Keputusan pengukuran tersebut
menunjukkan bahawa ketumpatan liang, keseragaman taburan liang dan saiz liang
bagi sampel Si berliang meningkat dengan masa punaran. Pada peringkat
seterusnya, H2O2 telah
dicampurkan ke dalam larutan elektrolit tersebut untuk mengkaji kesannya
terhadap sifat morfologi Si berliang. Daripada experimen tersebut, kami
mendapati bahawa H2O2 memberikan
struktur berliang yang lebih halus dengan bentuk kubik yang bersimetri tinggi
pada permukaan. Selain itu, H2O2 turut
menyebabkan permukaan dinding liang menjadi lebih licin. Justeru, hasil kajian
tersebut mencadangkan bahawa struktur Si berliang seperti ini boleh digunakan
sebagai substrat yang lebih baik untuk lapisan seterusnya, khususnya untuk
pertumbuhan bahan kubik.
Kata kunci: Hidrogen peroksida; sifat morfologi;
silicon berliang (100)
REFERENCES
Barillaro, G., Nannini, A. & Pieri, F. 2003. APSFET: A new,
porous silicon-based gas sensing device. Sensors and Actuators B 93:
263-270.
Foucaran, A., Pascal-Delannoy, F., Giani, A., Sackda, A.,
Combette, P. & Boyer, A. 1997. Porous silicon layers used for gas sensor
applications. Thin Solid Films 297: 317-320.
Hu, G., Qiang, L.S., Gong, H., Zhao, Y., Zhang, J., Sudesh, T.L.,
Wijesinghe, L. & Blackwood, D.J. 2009. White light from an indium zinc
oxide/porous silicon light-emitting diode. Journal of Physical Chemistry C 113:
751-754.
Ishikawa, H., Shimanaka, K., Azfar, M., Hara, Y. & Nakanishi,
M. 2010. Improved MOCVD growth of GaN on Si-on-porous-silicon substrates. Physical
Status Solidi C 7: 2049-2051.
Kumar, P., Hofmann, T., Knorr, K., Huber, P., Scheib, P. &
Lemmens, P. 2008. Tuning the pore wall morphology of mesoporous silicon from
branchy to smooth, tubular by chemical treatment. Journal of Applied Physics 103: 024303- 024303-6.
Kumar, P., Lemmens, P., Ghosh, M., Ludwig, F. & Schilling, M.
2009. Effect of HF concentration on physical and electronic properties of
electrochemically formed nanoporous silicon. Journal of Nanomaterials 2009:
728957.
Lehmann, V., Hofmann, F., Möller, F. & Grüning, U. 1995.
Resistivity of porous silicon: A surface effect. Thin Solid Films 255:
20-22.
Lehmann, V., Jobst, B., Muschik, T., Kux, A. & Petrova-Koch,
V. 1993. Correlation between optical properties and crystallite size in porous
silicon. Japanese Journal of Applied Physics 32: 2095-2099.
Sailor, M.J. 1997. Sensor applications of porous silicon. In Properties
of Porous Silicon, edited by Canham, L. Exeter, England: Short Run Press
Ltd. pp. 364-370.
Sharma, S.N., Sharma, R.K. & Lakshmikumar, S.T. 2005. Role of
an electrolyte and substrate on the stability of porous silicon. Physica E.
28: 264-272.
Splinter, A., Stürmann, J. & Benecke, W. 2001. Novel porous
silicon formation technology using internal current generation. Materials
Science and Engineering C 15: 109- 112.
Zhang, X.G. 2005. Porous silicon: Morphology and formation
mechanisms. In Modern Aspects of Electrochemistry 39,edited by Vayenas,
C.G., White, R.E. & Gamboa-Adelco, M.E. New York: Springer. pp. 65-133.
Zhang, X.G. 2004. Morphology and formation mechanisms of porous
silicon. Journal of the Electrochemical Society 151: C69-C80.
*Corresponding
author; email: norzaini@usm.my
|