Sains Malaysiana 42(9)(2013): 1333–1337

 

Preparation of Porous Si (100) for Overgrown Cubic Layer: Morphological Investigation

(Penyediaan Si (100) Berliang untuk Pertumbuhan Lapisan Atas Kubik: Kajian Morfologi)

 

 

M.E.A. Samsudin1, M. Ikram Md Taib1, N. Zainal1*, R. Radzali2 3, S. Yaakob4 & Z. Hassan1

1Nano-optoelectronics Research and Technology, School of Physics, Universiti Sains Malaysia

11800, Penang, Malaysia

 

2Nano-optoelectronics Research and Technology, School of Physics, Universiti Sains Malaysia

11800, Penang, Malaysia

 

3Fakulti Kejuruteraan Elektrik Universiti Teknologi MARA 40450 Shah Alam, Selangor, D.E. Malaysia

  4School of Chemical Sciences, Universiti Sains Malaysia, 11800, Penang, Malaysia

 

Received: 19 December 2012 /Accepted: 19 January 2013

 

ABSTRACT

A number of n-type Si (100) samples were prepared into porous structures via electrochemical etching process, using an electrolyte solution; HF and ethanol. The morphological properties of the samples were observed under scanning electron microscope measurement. The results showed that the pore density, pore uniformity distribution and pore size of the porous Si samples increased with time of etching. In the next stage, H2O2 was introduced into the electrolyte solution in order to investigate its effect on the morphological properties of the porous Si. From the experiment, we found that H2O2  gave finer porous structure with highly symmetrical cubic shape on the surface. Besides, H2O2 promoted smoother surface of the pore walls. Hence, the results showed that such porous Si structure could be used as a better substrate for the subsequent layer, in particular for the growth of cubic material.

 

Keywords: Hydrogen peroxide; morphological properties; porous silicon

 

ABSTRAK

Beberapa jenis-n Si (100) sampel telah disediakan dalam bentuk struktur berliang melalui proses punaran elektrokimia, menggunakan larutan elektrolit; HF dan etanol. Sifat morfologi sampel tersebut telah diperhatikan di bawah mikroskop elektron imbasan. Keputusan pengukuran tersebut menunjukkan bahawa ketumpatan liang, keseragaman taburan liang dan saiz liang bagi sampel Si berliang meningkat dengan masa punaran. Pada peringkat seterusnya, H2O2 telah dicampurkan ke dalam larutan elektrolit tersebut untuk mengkaji kesannya terhadap sifat morfologi Si berliang. Daripada experimen tersebut, kami mendapati bahawa H2O2 memberikan struktur berliang yang lebih halus dengan bentuk kubik yang bersimetri tinggi pada permukaan. Selain itu, H2O2 turut menyebabkan permukaan dinding liang menjadi lebih licin. Justeru, hasil kajian tersebut mencadangkan bahawa struktur Si berliang seperti ini boleh digunakan sebagai substrat yang lebih baik untuk lapisan seterusnya, khususnya untuk pertumbuhan bahan kubik.

 

Kata kunci: Hidrogen peroksida; sifat morfologi; silicon berliang (100)

 

REFERENCES

 

Barillaro, G., Nannini, A. & Pieri, F. 2003. APSFET: A new, porous silicon-based gas sensing device. Sensors and Actuators B 93: 263-270.

Foucaran, A., Pascal-Delannoy, F., Giani, A., Sackda, A., Combette, P. & Boyer, A. 1997. Porous silicon layers used for gas sensor applications. Thin Solid Films 297: 317-320.

Hu, G., Qiang, L.S., Gong, H., Zhao, Y., Zhang, J., Sudesh, T.L., Wijesinghe, L. & Blackwood, D.J. 2009. White light from an indium zinc oxide/porous silicon light-emitting diode. Journal of Physical Chemistry C 113: 751-754.

Ishikawa, H., Shimanaka, K., Azfar, M., Hara, Y. & Nakanishi, M. 2010. Improved MOCVD growth of GaN on Si-on-porous-silicon substrates. Physical Status Solidi C 7: 2049-2051.

Kumar, P., Hofmann, T., Knorr, K., Huber, P., Scheib, P. & Lemmens, P. 2008. Tuning the pore wall morphology of mesoporous silicon from branchy to smooth, tubular by chemical treatment. Journal of Applied Physics 103: 024303- 024303-6.

Kumar, P., Lemmens, P., Ghosh, M., Ludwig, F. & Schilling, M. 2009. Effect of HF concentration on physical and electronic properties of electrochemically formed nanoporous silicon. Journal of Nanomaterials 2009: 728957.

Lehmann, V., Hofmann, F., Möller, F. & Grüning, U. 1995. Resistivity of porous silicon: A surface effect. Thin Solid Films 255: 20-22.

Lehmann, V., Jobst, B., Muschik, T., Kux, A. & Petrova-Koch, V. 1993. Correlation between optical properties and crystallite size in porous silicon. Japanese Journal of Applied Physics 32: 2095-2099.

Sailor, M.J. 1997. Sensor applications of porous silicon. In Properties of Porous Silicon, edited by Canham, L. Exeter, England: Short Run Press Ltd. pp. 364-370.

Sharma, S.N., Sharma, R.K. & Lakshmikumar, S.T. 2005. Role of an electrolyte and substrate on the stability of porous silicon. Physica E. 28: 264-272.

Splinter, A., Stürmann, J. & Benecke, W. 2001. Novel porous silicon formation technology using internal current generation. Materials Science and Engineering C 15: 109- 112.

Zhang, X.G. 2005. Porous silicon: Morphology and formation mechanisms. In Modern Aspects of Electrochemistry 39,edited by Vayenas, C.G., White, R.E. & Gamboa-Adelco, M.E. New York: Springer. pp. 65-133.

Zhang, X.G. 2004. Morphology and formation mechanisms of porous silicon. Journal of the Electrochemical Society 151: C69-C80.

 

 

*Corresponding author; email: norzaini@usm.my

 

previous