Sains Malaysiana 42(9)(2013): 1339–1344
Pendekatan
Pengesanan Titik Sauh Secara Automatik bagi Kesan Pin Peletup Senjata Api
(Automatic Anchor Point Detection Approach for Firearms Firing Pin
Impression)
Zun Liang Chuan1, Nor Azura Md Ghani2, Choong-Yeun Liong1* & Abdul Aziz Jemain1
1Pusat Pengajian Sains Matematik, Fakulti Sains dan Teknologi, Universiti
Kebangsaan Malaysia
43600 UKM Bangi, Selangor D.E, Malaysia
2Pusat Pengajian Statistik dan Sains Pemutusan, Fakulti Sains Komputer
dan Matematik
Universiti Teknologi MARA, 40450 Shah Alam, Selangor D.E,Malaysia
Received: 22 May 2012 / Accepted: 10 March 2013
ABSTRAK
Oleh sebab kejadian jenayah bersenjata api semakin berleluasa, pengecaman senjata api yang digunakan oleh penjenayah amat
diperlukan sebagai bahan bukti dalam mahkamah. Beberapa sistem pengecaman
senjata api telah diutarakan sebagai pengganti kepada
cara penyiasatan tradisional yang amat bergantung kepada kepakaran ahli
balistik. Pemetakan rantau tumpuan (ROI) berdasarkan kedudukan titik
sauh (PAP) sempadan bulatan kesan pin peletup pada tapak
kelongsong peluru merupakan langkah yang amat penting dalam sistem pengecaman
senjata api automatik. Walau
bagaimanapun, kaedah yang digunakan dalam kajian lepas bagi mengesan (PAP)
sempadan bulatan tersebut adalah sangat kompleks dan memerlukan masa
pemprosesan yang panjang. Kajian ini menerokai
algoritma yang efisien dan berkemampuan untuk mengesan PAP sempadan
bulatan secara automatik. Algoritma yang diutarakan
merupakan gabungan daripada penapis penajaman reruang, penormalan histogram,
pengambangan dan penganggar kuasa dua terkecil tak berpemberat. Dua kaedah pengambangan yang terkenal telah diuji dan dibandingkan,
iaitu kaedah pengambangan berasaskan pengelompokan dan kaedah berasaskan entropi. Di samping itu, penerokaan kesan saiz dan bentuk (ROI)
terhadap kadar pengelasan senjata api turut
dipersembahkan. Sebanyak 747 imej kesan pin peletup jenis sempadan bulatan
peletup yang dihasilkan oleh lima pucuk pistol yang
berlainan daripada jenis yang sama digunakan untuk menguji algoritma yang
diutarakan. Kadar pengelasan imej kesan pin peletup yang memberangsangkan (>
95%) telah dicapai dengan algoritma yang dicadangkan. Kajian juga mendapati
bahawa saiz dan bentuk pemetakan ROI mempunyai kesan langsung terhadap kadar pengelasan senjata api.
Kata kunci: Balistik forensik; rantau tumpuan; senjata api; titik sauh
ABSTRACT
Since the number of crimes involving firearms is becoming rampant,
identification of firearms used by criminals is a crucial step in the court.
Several automatic firearm identification systems have been developed to improve
on the traditional investigation method which relies heavily on the expertise
of the forensic ballistics experts. An important step in automatic firearm identification
is partitioning of the region of interest (ROI)
based on the position of the anchor point (PAP)
within the circular boundary of a firing pin impression. However, in the
previous studies, the methods used to determine the PAP of
a circular boundary are very complex and time consuming. This study explored
algorithms that are efficient and able to detect the anchor point of a circular
boundary automatically. The proposed algorithms are a combination of sharpening
spatial filter, histogram normalization, thresholding and an unweighted least
square estimator. Two popular threshold selection methods, namely
clustering-based and entropy-based threshold selection methods, have been
investigated and compared. In addition, exploration on the effects of size and
shape of ROI on the firearm classification accuracy rates were
discussed. A total of 747 images of circular boundary firing pin impression
produced by five different pistols of the same model were used to test the
proposed algorithms. Encouraging classification rates of the firing pin
impression images (> 95%) were achieved with the proposed algorithms. This
study also found that the size and the shape of the ROI partition
have a direct effect on the firearms classification rates.
Keywords: Anchor point; firearms; forensic
ballistics; region of interest
REFERENCESS
Geradts, Z., Bijhold, J.,
Hersen, R. & Murtagh, F. 2001. Image matching algorithms for breech face marks and firing pins
in a database of spent cartridge cases of firearms. Forensic Science
International 119(1): 97-106.
Ghani, N.A., Liong, C-Y, & Jemain, A.A.
2009. Analysis of geometric moments as features for identification
of forensic Ballistics Specimen. Lecture Notes in Computer Science:
LNCS 5518. Berlin: Springer.
Ghani, N.A. 2010. Analisis spesimen balisitik
forensik untuk pengecaman senjata api. Tesis Dr. Fal,
Pusat Pengajian Sains Matematik, Universiti Kebangsaan Malaysia (tidak
diterbitkan).
Ghani, N.A., Liong, C-Y. & Jemain, A.A.
2010. Analysis of geometric moments as features for firearm
identification. Forensic Science International 198(1-3): 143-149.
Gupta, M.R., Jacobson, N.P. & Garcia, E.K.
2007. OCR binarization and image pre-processing for searching
historical documents. Pattern Recognition 40: 389-397.
Hu, M-K. 1962. Visual pattern recognition by
moment invariants. IRE Transactions on Information Theory 8(2): 179-187.
Kapur, J.N., Sahoo, P.K. & Wong, A.K.C.
1985. A new method for gray-level picture thresholding using
the entropy of the histogram. Computer Vision, Graphics, and Image
Processing 29: 273-285.
Leng, J. & Huang, Z. 2012. On analysis of
circle moments and texture features for cartridge images recognition. Expert
Systems with Applications 39: 2092-2101.
Li, D.G. 2003. Image
processing for the positive identification of forensic ballistics specimens. Proceedings of the 6th International Conference on
Information Fusion 2003.
Mukundan, R., Ong, S.H.
& Lee, P.A. 2001. Image
analysis by Tchebichef moments. IEEE Transactions on Image Processing 10(9): 1357-1364.
Otsu, N. 1979. A threshold selection method form gray-level histograms. IEEE
Transactions on Systems, Man and Cybernetics SMC-9(1): 62-66.
Pan, F. & Keane, M. 1994. A new set of moment invariants for
handwritten numeral recognition. Proceedings of the International Conference
on Image Processing, hlm 154-158.
Pattanachai, N., Covavisaruch, N. &
Sinthanayothin, C. 2012. Tooth recognition in
dental radiographs via Hu’s moment invariants. Proceedings of the 9th
International Conferenceon Electrical Engineering/ Electronics, Computer,
Telecommunications and Information Technology, hlm. 1-4.
Radhika, K.R., Venkatesha, M.K. & Sekhar, G.N. 2011. An approach for on-line signature authentication using Zernike
moments. Pattern Recognition Letters 32: 749-769.
Shih, F.Y. 2010. Image Processing and Pattern Recognition:
Fundamentals and Techniques. Hoboken, New Jersey: John Wiley & Sons.
Shu, H., Zhang, H., Chen, B., Haigron, P. &
Luo, L. 2010. Fast
computation of Tchebichef Moments for binary and grayscale images. IEEE
Transactions on Image Processing 19(12): 3171-3180.
Tang, Y., Mu, W., Zhang, Y. & Zhang, X. 2011. A fast recursive
algorithm based on fuzzy 2-partition entropy approach for threshold selection. Neurocomputing 74(17): 3072-3078.
Teague, M.R. 1980. Image analysis via the
general theory of moments. Journal of the Optical Society of America 70(8):
920-930.
Thomas, S.M. & Chan, Y.T. 1989. A simple
approach for the estimation of circular arc center and its radius. Computer
Vision, Graphics, and Image Processing 45: 362-370.
Wu, W-Y. & Yu, W-B. 2009. Subpixel detection of circular
objects using geometric property. World
Academy of Science, Engineering and Technology 56: 236-240.
Xin, L.P., Zhou, J. & Rong, G. 2000. A
cartridge identification system for firearms authentication. Proceedings
of the 5th International Conference on Signal Processing, WCCC-ICSP 2000,
hlm. 1405-1408.
Zhou, J., Xin, L.P., Gao, D.S., Zhang, C.S.
& Zhang, D. 2001. Automated
identification for firearms authentication. Proceedings of the IEEE
Computer Society Conference on Computer Vision and Pattern Recognition CVPR’01,
hlm 749-754.
*Corresponding author; email: lg@ukm.my
|