Sains Malaysiana 43(10)(2014): 1471–1475
Desiccation
Tolerance in Phaleria macrocarpa Embryonic Axes
(Toleransi Terhadap Pengeringan pada Paksi Embrio Phaleria macrocarpa)
S.M. AHMED ASRITY1, F.Y., TSAN1*, P. DING2 & S.R. SYED ARIS1
1Faculty of Plantation and Agrotechnology, Universiti Teknologi MARA, 40450 Shah Alam,
Selangor, Malaysia
2Faculty of Agriculture, Universiti Putra Malaysia, 43400 Serdang,
Selangor, Malaysia
3Faculty of Applied Sciences, Universiti Teknologi MARA, 40450
Shah Alam, Selangor, Malaysia
Received: 21 September 2013/Accepted: 13 February 2014
ABSTRACT
Phaleria macrocarpa seeds are rapidly killed
with desiccation to moisture content (MC) below 20%. Desiccation
tolerance of their embryonic axes was studied for storage and germplasm conservation purposes. Embryonic axes were
extracted aseptically from fresh seeds obtained from fully ripe fruits in a
horizontal laminar air flow cabinet. They were then desiccated under aseptic
condition for periods ranging from 0-8 h. For each desiccation treatment,
embryonic axes were drawn randomly for the determination of MC according
to ISTA, electrolyte leakage and proliferation on Murashige and Skoog (MS)
media supplemented with 1 mg/l 6-benzylaminopurine (BAP)
and 1 mg/l 2,4-dichlorophenoxyacetic acid (2,4-D). The results obtained from
this study indicated that the embryonic axes could tolerate dehydration down to
13.6% with desiccation for 8 h while retaining relatively high viability of
76.7%. This was supported by only gradual increment of electrolyte leakage with
the desiccated embryonic axes. All non-desiccated embryonic axes with MC of
52.5% were capable to grow into normal plantlets in vitro but dehydration
to MC of 36.0% and further down to 13.6% generally resulted
in callus formation with up to 16.7% of the embryonic axes while at least 60.0%
of the other embryonic axes were still capable to proliferate as normal
plantlets in vitro.
Keywords: Callus; electrolyte leakage; moisture content; seed;
survival
ABSTRAK
Biji benihPhaleria macrocarpa mati dengan pengeringan ke kandungan kelembapan (MC)
di bawah 20%. Ketahanan pengeringan pada paksi embrio dikaji untuk tujuan penyimpanan dan konservasi germplasm. Paksi embrio diekstrak secara aseptik daripada biji benih segar yang diperoleh daripada buah masak dalam kebuk aliran udara laminar. Paksi embrio kemudiannya dikeringkan dalam keadaan aseptik untuk jangka masa 0-8 jam. Untuk setiap rawatan pengeringan, paksi embrio dikeluarkan secara rawak untuk penentuan MC mengikut tatacara ISTA, kebocoran elektrolit dan pertumbuhan di atas media Murashige dan Skoog (MS)
yang diperkayakan dengan 1
mg/l 6-benzilaminopurin (BAP) dan 1
mg/l 2,4-diklorofenosiasitik asid (2,4-D). Keputusan yang diperoleh daripada kajian ini menyatakan bahawa paksi embrio dapat bertoleransi terhadap pengeringan ke MC 13.6% dengan pengeringan selama 8 jam sementara masih mengekalkan kemandirian 76.7%
yang tinggi. Ini disokong dengan hanya peningkatan kebocoran elektrolit secara perlahan-lahan daripada paksi embrio yang dikeringkan. Semua paksi embrio yang tidak dikeringkan pada MC 52.5% dapat tumbuh kepada planlet yang normal secarain
vitro tetapi pengeringan ke MC 36.0% dan seterusnya ke 13.6% telah menyebabkan pembentukan tisu kalus sebanyak 16.7% dengan paksi embrio manakala sekurang-kurangnya 60.0% paksi embrio yang
lain masih dapat tumbuh kepada planlet yang normal secarain vitro.
Kata kunci: Biji benih; kalus; kandungan kelembapan; kebocoran elektrolit; kemandirian
REFERENCES
Asomaning, J.M. 2009. Seed desiccation tolerance and germination of seven important forest tree
species in Ghana. Dissertation, Faculty of Agriculture, College of
Agriculture and Natural Resources, Kwame Nkrumah University of Science and
Technology, Kumasi, Ghana. p. 212 (unpublished).
Daffalla, H.H., Abdellatef,
E., Elhadi, E.A. & Khalafalla,
M.M. 2011. Effect of growth regulators
on in vitro morphogenic response of Boscia senegalensis(Pers.)
Lam. Poir. using mature zygotic embryos explants. Biotechnology Research International 2011:
1-8.
Effendy, M.A.W., Andriani, Y., Sifzizul,
T.M.T. & Mohamad, H. 2011. Antibacterial, radical-scavenging activities and
cytotoxicity properties of Phaleria macrocarpa(Scheff.) Boerl. leaves in HepG2 cell lines. International Journal of Pharmaceutical Sciences and Research 7:
1700-1706.
Faria, J.M.R.
2006. Desiccation tolerance and sensitivity in Medicagen truncatulaand Inga varaseeds. PhD.
Dissertation, Wageningen University, the Netherlands. p. 145 (unpublished).
Harmanto, N. 2005. Mahkota Dewa: Obat Pusaka Para Dewa (A Medicine the Legacy of the Gods).
6th ed. Jakarta: Agro Media Pustaka. p. 104.
Hendra, R.,
Ahmad, S., Sukari, A., Yunus Shukor, M. & Oskoueian,
E. 2011. Flavonoid analyses and antimicrobial activity of various parts of Phaleria macrocarpa(Scheff.) Boerl Fruit. International
Journal of Molecular Science 12: 3422-3431.
Kaur, A. & Gosal, S.S. 2009.
Desiccation of callus enhances somatic embryogenesis and subsequent shoot
regeneration in sugarcane. Indian Journal of Biotechnology 8: 332-334.
Kusuma, I.W., Kuspradini,
H., Arung, E.T., Aryani,
F., Min, Y.H., Kim, J.S. & Kim, Y. 2011. Biological activity and phytochemical analysis
of three Indonesian medicinal plants, Murraya koenigii, Syzygium polyanthumand Zingiber purpurea. Journal of Acupuncture and
Meridian Studies 4: 75-79.
Liang, Y. & Sun, W.Q. 2000. Desiccation tolerance of
recalcitrant Theobroma cacao embryonic
axes: The optimal drying rate and its physiological basis. Journal of
Experimental Botany 51(352): 1911-1919.
Mathews, H., Schopke,
C., Carcamo, R., Chavarriaga,
P., Fauquent, C. & Beuchy,
R.N. 1993. Improvement of somatic
embryogenesis and plant recovery in cassava. Plant Cell Reports 12:
328-333.
Mng’omba, S.A.,
du Toit, E.S. & Akinnifesi,
F.K. 2008. Plant regeneration through somatic embryogenesis
of jacket plum (Pappea capensis). New Zealand Journal of Crop and Horticultural Science 36: 137-144.
Murashige, T. & Skoog, F.
1962. A revised medium for rapid growth and bio
assays with tobacco tissue cultures. Physiologia Plantarum15(3): 473-497.
Nedeva, D.
& Nikolova, A. 1997. Desiccation
tolerance in developing seeds. Bulgarian Journal of Plant Physiology 23(3-4):
100-113.
Normah, M.N.
& Makeen, A.M. 2008. Cryopreservation
of excised embryos and embryonic axes. In Plant Cryopreservation,
edited by Reed, B.M. New York: Springer. pp. 211-240.
Obendorf, R.L., Dickerman, A.M., Pflum, T.M., Kacalanos, M.A. & Smith, M.E. 1998. Drying rate alters
soluble carbohydrates, desiccation tolerance and subsequent seedling growth of
soybean (Glycine max L. Merrill) zygotic embryos during in vitro maturation. Plant Science 132: 1-12.
Pammenter, N.W., Greggains, V., Kioko, J.I.,
Wesley-Smith, J., Berjak, P. & Finch-Savage, W.E.
1998. Effects of differential drying rates on viability
retention of recalcitrant seeds of Ekebergia capensis. Seed Science Research 8(4):
463-471.
Panza, V., Lainez, V.,
Maldonado, S. & Maroder, H.L. 2007. Effects of desiccation on Euterpe edulisMartius seeds. Biocell 31(3): 383-390.
PROSEA. 1992. Edible Fruits and Nuts. Plant
Resources of South East Asia No. 2. pp. 186-190.
Radha, R.K.,
William Decruse, S. & Krishnan, P.N. 2010.
Cryopreservation of excised embryonic axes of Nothapodytes nimmoniana(Graham) Mebberly - A vulnerable medicinal tree species of the Western Ghats. Indian Journal
of Biotechnology 9: 435-437.
Roberts, E.H. 1973. Predicting the storage life of seeds. Seed
Science Technology 1: 499-514.
Roberts, E.H. & King, M.W. 1980. The
characteristic of recalcitrant seeds. In Recalcitrant Crop Seeds,
edited by Chin, H.F. & Roberts, E.H. Kuala Lumpur:
Tropical Press Sdn. Bhd. pp. 1-5.
Sher, A. 2009. Antimicrobial activity of natural products from medicinal plants. Gomal Journal of Medical Sciences 7: 72.
Sivritepe, N., Sivritepe, H.O.
& Turkben, C. 2008. Determination of moisture content in grape
seeds. Seed Science and Technology 36: 198-200.
Spanò, C., Bottega, S., Grilli, I. & Lorenzi, R.
2011. Responses to desiccation
injury in developing wheat embryos from naturally- and artificially-dried
grains. Plant Physiology and Biochemistry 49(4): 363-367.
Tate, D. 2002. Tropical Fruit. 2nd ed. Singapore: Didier
Millet. pp. 64-65.
Tzec-Sima, M.A., Orellana, R. & Robert, M.L. 2006. In vitro rescue of isolated embryos of Bactris major and Desmoncus orthacanthos. In Vitro Cellular and
Developmental Biology - Plant 42: 54-58.
Winarto, W.P.
2004. Mahkota Dewa: Budi Daya & Pemanfaatan untuk Obat. Jakarta: Penebar Swadaya. p. 88.
Zhang, Y., Xu, X. & Liu, H. 2006. Chemical
constituents from Mahkota Dewa. Journal of
Asian Natural Products Research 8: 119-123.
*Corresponding author; email: tsanfuiying@salam.uitm.edu.my
|