Sains Malaysiana 43(10)(2014): 1565–1571
Radiological
Impact Assessment of Fukushima Daiichi Nuclear Accident on
Malaysian
Marine biotas via Ocean Partway using Erica Code System
(Penilaian Kesan Radiologi terhadap Kehidupan Akuatik melalui Lautan Pasifik ke Malaysia
Akibat Bencana Nuklear Fukushima Daiichi dengan Kod-Sistem Erica)
HOH SIEW SIN1, SUKIMAN SARMANI2 & KHOO KOK SIONG1*
1School of Applied Physics, Faculty of Science and Technology,
Universiti Kebangsaan
Malaysia, 43600 Bangi, Selangor, Malaysia
2School of Chemical Sciences & Food Technology, Faculty
of Science and Technology
Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
Received: 3 September 2013/Accepted: 10 February 2014
ABSTRACT
Fukushima Daiichi nuclear disaster led to radioactive contamination
crisis was resulted from a series of system failures, nuclear meltdown
and radioactive material releases, following the 9.0 magnitude of
earthquake and tsunami on March 11, 2011. The objectives of this
study were; to investigate the movement of radionuclides based on
oceanography and morphology of Pacific Ocean and Southeast Asia
(Malaysia); to estimate the time for radionuclides to reach Malaysia
and to calculate the amount of total absorbed dose rate for selected
marine biotas namely benthic fish and pelagic fish. ERICA code
system was used because it has the ERICA integrated approach to assess the radiation
risk of biota. The estimations of radionuclide discharge from Fukushima
Daiichi nuclear disaster were based on Cs-137 (half-life of 30.17
years), I-131 (half-life of 0.02 years). The parameters such as
discharge rate of radionuclides (Bq/s),
water depth (m), the distance between the target coast of Malaysia
and radionuclide release point (m), the distance between the receptor
and radionuclide release (m) and the velocity of the water/ocean
currents (m/s) were studied. The results showed that the minimum
estimated arrival time of radionuclides to reach Malaysia is located
in Sandakan, Sabah, which is approximated at 4.82 years (Dec 2015)
with an average of 5.039±0.310 years after the accident.
Meanwhile, maximum estimated arrival time of radionuclides to Malacca
is 5.87 years (Jan 2017) with an average of 5.527±0.480 years.
The lowest estimated total absorbed dose rate by benthic fish is
0.0583 μGy/h with an average of
(6.33±0.71) × 10-2 μGy/h in Malacca whereas the highest estimated total
absorbed dose rate by benthic fish is 0.0751 μGy/h
with an average of (7.11±0.57) × 10-2 μGy/h
in Sandakan, Sabah. Pelagic fish in Malacca shows the lowest estimated
total absorbed dose rate of 0.00149 μGy/h
with an average of (1.62±0.18) × 10-3 μGy/h whereas
Sandakan, Sabah showed the highest estimated total absorbed dose
rate of 0.00193 μGy/h with an average
of (1.83±0.15) × 10-3
μGy/h. The total
absorbed dose rate and risk quotient of ERICA code system show that for all reference
organisms, the probability of exceeding the selected screening dose
rate of 400 μGy/h by aquatic biota
is below the probability selected. Therefore, no measurable population
of chronic exposure effects would occur at this stage. Nonetheless,
a normal experimental analysis of fish samples should be performed
in order to monitor the radiation effects to marine ecosystem.
Keywords: ERICA; Fukushima Daiichi nuclear disaster;
marine biota; total absorbed dose rate
ABSTRAK
Kemalangan Loji
Kuasa Reaktor
Nuklear Fukushima Daiichi merupakan
krisis pencemaran
nuklear akibat kerosakan dan pelepasan
bahan radiokatif
akibat bencana gempa bumi bermagnitud
9.0 diikuti tsunami yang melanda
Jepun pada
11 Mac 2011. Objektif kajian ini adalah;
untuk mengkaji
cara pergerakan radionuklid berdasarkan arus dan morfologi
oseanografi Lautan
Pasifik dan Asia Tenggara; menjangka masa pergerakan radionuklid ke Malaysia yang
dibebaskan oleh kemalangan Reaktor Nuklear Fukushima Daiichi melalui
perairan Malaysia dan
mengira jumlah anggaran kadar dos terserap terhadap ikan bentik dan
ikan pelagik.
Kod sistem ERICA digunakan
kerana ia
mempunyai struktur
berdasarkan Pendekatan ERICA Bersepadu untuk menilai risiko sinaran kepada biota. Radionuklid
dianggap bebas daripada loji kuasa
reaktor nuklear
berdasarkan Cs-137 (separuh
hayat 30.17 tahun) dan I-131 (separuh hayat 0.02 tahun). Parameter
seperti kadar
aktiviti radionuklid yang dibebaskan (Bq/s), kedalaman air (m), jarak antara sasaran pantai Malaysia dan tempat melepaskan radionuklid (m), jarak antara reseptor dengan tempat melepaskan
radionuklid (m) dan
kadar kelajuan air/arus pengairan lautan (m/s) telah dikaji. Hasil kajian
menunjukkan jangkaan
masa tercepat ketibaan radionuklid ke Malaysia adalah 4.82 tahun (Dis 2015)
dengan purata 5.039±0.310
tahun bertempat di Sandakan,
Sabah manakala jangkaan
masa terlambat adalah
5.87 tahun (Jan 2017) bertempat
di Melaka dengan purata
5.527±0.480 tahun. Jumlah
anggaran kadar
dos terendah terhadap
ikan bentik mengikut
jarak terjuah
adalah 0.0583 μGy/j berpurata (6.33±0.71) × 10-2 μGy/j
bertempat di Melaka manakala
jumlah kadar
dos tertinggi terhadap ikan bentik mengikut
jarak terdekat
adalah 0.0751 μGy/j berpurata (7.11±0.57) × 10-2 μGy/j
di Sandakan. Ikan pelagik
di Melaka mempunyai anggaran
jumlah kadar
dos terendah mengikut jarak terjuah iaitu
0.00149 μGy/j dengan
purata (1.62±0.18) × 10-3 μGy/j
manakala Sandakan mempunyai
jumlah kadar
dos tertinggi mengikut jarak terdekat iaitu 0.00193 μGy/j berpurata (1.83±0.15) × 10-3 μGy/j.
Jumlah kadar
dos terserap dan tahap
risiko kod
sistem ERICA menunjukkan bahawa untuk semua rujukan
organisma, kebarangkalian
melebihi kadar dos terhad yang dipilih iaitu 400 μGy/j oleh biota akuatik adalah di bawah kebarangkalian yang dipilih.
Oleh itu, tidak ada
kesan pendedahan
kronik kepada populasi
yang dapat diukur
pada peringkat ini. Walau bagaimanapun, penganalisian
sampel ikan perlu
dilakukan untuk
memantau kesan sinaran terhadap ekosistem marin.
Kata kunci:
Biota lautan; ERICA; jumlah kadar dos terserap; kemalangan Loji Kuasa Reaktor Nuklear Fukushima Daiichi
REFERENCES
Albert, C.G., Hadil,
R. & Daud, A. 2003. Overview of biology and exploitation of
the small pelagic fish resources of the EEZ of Sarawak, Malaysia. National Fisheries Symposium. Kelantan, Kota Bharu. 20 February.
Anderson, G. 2003. Marine Science Seawater
Movement. http:// www.marinebio.net/marinescience/02ocean/swmovement. htm. Accessed on 15 December 2012.
Advanced Google Map Distance Calculator
2013. Daft Logic.
http://www.daftlogic.com/projects-advanced-google-maps-distance-calculator.htm.
Accessed on 23 Jun 2013.
Brown, J.E., Beresford, N.A. & Hosseini, A. 2013. Approaches to providing missing transfer parameter values in the ERICA Tool:
How well do they work? Journal of Environmental Radioactivity 126(12):
399-411.
Brown, J.E., Alfonso, B., Avila, R.,
Beresford, N.A., Copplestone, D., Pröhl,
G. & Ulanovsky, A. 2008. The ERICA tool. Journal of
Environmental Radioactivity 9(99): 1371-1383.
Blaylock, B.G., Frank, M.L. &
O’Neal, B.R. 1993. Methodology for Estimating
Radiation Dose Rates to Freshwater Biota Exposed to Radionuclides in the
Environment ES/ER/TM-78. U.S. Department of Energy.
Chino, M., Nakayama, H., Nagai, H.,
Terada, H., Katata, G. & Yamazawa,
H. 2011. Preliminary estimation of release
amounts of 131I and 137Cs accidentally discharged from the Fukushima Daiichi
Nuclear Power Plant into the atmosphere. Journal of Nuclear Science and
Technology 7(48): 1129-1134.
Google Map 2013. Map of south east Asia. https://maps. google.com.my/maps?hl=en&q=pnas&um=1&ie=UTF-
8&sa=N&tab=wl. Accessed
on 15 January 2013.
Gregory, C.J. & Michael, J.M. 2001. Equatorial Pacific
Ocean Horizontal Velocity, Divergence and Upwelling. Pacific
Environmental Laboratory Seattle 2181.
IAEA. 2011. Report of the Japanese Government to the IAEA
Ministerial Conference on Nuclear Safety. Vienna: International Atomic Energy
Agency.
IAEA. 1992. Effects of Ionizing Radiation on Plants and
Animals at Levels Implied by Current Radiation Protection Standards, IAEA
Technical Report Series 332. Vienna: International Atomic Energy Agency.
Knauss, J.A. 1978. An Introduction to
Physical Oceanography. Berlin: Berlin University.
Kryshev, I.I., Kryshev, A.I. & Sazykina, T.G. 2012. Dynamics of
radiation exposure to marine biota in the area of the Fukushima NPP in March -
May 2011. Journal of Environmental Radioactivity 114: 157-161.
Laura, T., Erika, B., Giorgia, C., Alberto, P. & Domiziano,
M. 2012. Comparison of radioactivity data
measured in PM10 aerosol samples at two elevated stations in northern Italy
during the Fukushima event. Journal of Environmental Radioactivity 114:
105-112.
Lujaniene, G., Bycenkiene,
S., Povinec, P. & Gera, M. 2011. Radionuclides from the Fukushima accident in the air over
Lithuania: Measurement and modelling approaches. Journal of Environmental
Radioactivity 114: 71-80.
MHLW. 2011. Handling of food contaminated by radioactivity.
Pharmaceutical and Food Safety Bureau, Ministry of Health, Labour and Welfare 0317 Article 3. Tokyo, Japan.
NOAA. 2012. North Pacific subtropical convergence zone.
http://marinedebris.noaa.gov/info/patch.html. Accessed on 15 December 2012.
Sazykina, T.G. & Kryshev, I.I. 2002. Assessment of the Impact of Radioactive Substance on Marine
Biota of North European Water. SPA Typhoon: European
Commission.
UNSCEAR. 2012. The Fukushima-Daiichi nuclear power plant
accident. http://www.unscear.org/unscear/en/fukushima.html. Accessed on 18
December 2012.
UNSCEAR. 1996. Sources and Effects of Ionizing Radiation.
New York: United Nations Scientific Committee on the Effects of Atomic
Radiation.
*Corresponding
author; email: khoo@ukm.edu.my
|