Sains Malaysiana 43(10)(2014): 1591–1597
BFGS
Method: A New Search Direction
(Kaedah BFGS: Arah Carian Baharu)
MOHD. ASRUL
HERY
BIN IBRAHIM1, MUSTAFA
MAMAT2*
& LEONG WAH JUNE3
1Fakulti
Keusahawanan dan Perniagaan, Universiti Malaysia Kelantan,
16100
Pengakalan Chepa, Kelantan, Malaysia
2Fakulti Informatik
dan Komputeran, Universiti Sultan
Zainal Abidin,
21030 Kuala Terengganu, Terengganu, Malaysia
3Jabatan
Matematik, Fakulti Sains, Universiti Putra Malaysia
43400 Serdang, Selangor, D.E. Malaysia
Received: 25 April 2013/Accepted:
13 February 2014
ABSTRACT
In this paper we present a new line search method known as the HBFGS method, which uses the search direction of the conjugate gradient
method with the quasi-Newton updates. The Broyden-Fletcher-Goldfarb-Shanno (BFGS)
update is used as approximation of the Hessian for the methods. The new
algorithm is compared with the BFGS method in terms of
iteration counts and CPU-time. Our numerical analysis
provides strong evidence that the proposed HBFGS method
is more efficient than the ordinary BFGS method. Besides, we also
prove that the new algorithm is globally convergent.
Keywords: BFGS method; conjugate gradient
method; globally convergent; HBFGS method
ABSTRAK
Dalam kertas ini kami berikan suatu kaedah carian yang baru
dikenali sebagai kaedah HBFGS yang menggunakan arah carian
kaedah kecerunan konjugat dengan kemaskini kuasi-Newton. Kemaskini
Broyden-Flecther-Goldfarb-Shanno (BFGS) digunakan sebagai formula
untuk penghampiran kepada Hessian bagi kedua-dua kaedah. Algoritma baru
dibandingkan dengan kaedah kuasi-Newton dalam aspek bilangan lelaran dan juga
masa CPU. Keputusan berangka menunjukkan bahawa kaedah HBFGS adalah lebih baik jika dibandingkan dengan kaedah BFGS yang
asal. Selain itu, kami juga membuktikan bahawa algoritma baru ini adalah bertumpuan
secara sejagat.
Kata kunci: Bertumpuan sejagat; kaedah BFGS; kaedah HBFGS;
kaedah kecerunan konjugat
REFERENCES
Andrei, N. 2008. An unconstrained optimization
test functions collection. Advanced Modelling and Optimization 10(1):
147-161.
Armijo, L. 1966. Minimization of functions
having Lipschitz continuous partial derivatives. Pacific Journal of
Mathematics 16(1): 1-3.
Birgin, E. & Martínez, J.M. 2001. A spectral
conjugate gradient method for unconstrained optimization. Applied
Mathematics and Optimization 43: 117-128.
Buckley, A. & Lenir, A. 1983. QN-like
variable storage conjugate gradients. Mathematical Programming 27(2):
155-175.
Byrd, R.H. & Nocedal, J. 1989. A tool for
the analysis of Quasi-Newton methods with application to unconstrained
minimization. SIAM Journal on Numerical Analysis 26(3): 727-739.
Byrd, R.H., Nocedal, J. & Yuan, Y-X. 1987.
Global convergence of a class of Quasi-Newton methods on convex problems. SIAM
Journal on Numerical Analysis 24 (5): 1171-1191.
Dai, Y-H. 2002. Convergence properties of the
BFGS algoritm. SIAM Journal on Optimization 13(3): 693-702.
Dolan, E.D. & Moré. J.J. 2002. Benchmarking
optimization software with performance profiles. Mathematical Programming 91(2):
201-213.
Goldstein, A. 1965. On steepest descent. Journal
of the Society for Industrial and Applied Mathematics Series A Control 3(1):
147-151.
Hillstrom, E.K. 1977. A simulation test approach
to the evaluation of nonlinear optimization algorithm. Journal ACM Trans.
Mathematics Software 3(4): 305-315.
Li, D-H. & Fukushima, M. 2001. A modified
BFGS method and its global convergence in nonconvex minimization. Journal of
Computational and Applied Mathematics 129: 15-24.
Mamat Mustafa, Ismail Mohd, Leong Wah June &
Yosza Dasril. 2009. Hybrid Broyden method for unconstrained optimization. International
Journal of Numerical Methods and Applications 1(2): 121-130.
Mascarenhas, W.F. 2004. The BFGS method with
exact line searches fails for non-convex objective functions. Mathematical
Programming 99(1): 49-61.
More, J.J., Garbow, B.S. & Hillstrom, K.E.
1981. Testing unconstrained optimization software. ACM Trans. Math. Softw. 7(1):
17-41.
Nocedal, J. 1980. Updating Quasi-Newton matrices
with limited storage. Mathematics of Computation 35(151): 773-782.
Powell, M.J.D. 1976. Some global convergence
properties of variable metric algorithm for minimization without exact line
searches in nonlinear programming. In SSIAM-AMS Proc IX AMS Providence, edited
by Cottle, R.W. & Lemke, C.E. RI: 53-72.
Shi, Z-J. 2006. Convergence of quasi-Newton
method with new inexact line search. Journal of Mathematical Analysis and
Applications 315(1): 120-131.
Wolfe, P. 1971. Convergence conditions for
ASCENT methods. II: Some corrections. SIAM Review 13(2): 185-188.
Wolfe, P. 1969. Convergence conditions for
ASCENT methods. SIAM Review 11(2): 226-235.
Zbigniew M. 1996. Genetic Algorithms + Data
Structures = Evolution Programs. New York: Springer Verlag.
Zhang, L., Zhou, W.J. & Li, D.H. 2006. A
descent modified Polak-Ribiére-Polyak conjugate gradient method and its global
convergence. IMA Journal of Numerical Analysis 26: 629-640.
*Corresponding author; email: must@unisza.edu.my
|