Sains Malaysiana 43(10)(2014):
1609–1622
Application
of the Threshold Model for Modelling and Forecasting of
Exchange
Rate in Selected ASEAN Countries
(Aplikasi Model Ambang untuk Permodelan dan Peramalan Kadar
Pertukaran di Negara ASEAN Terpilih)
BEHROOZ GHARLEGHI*, ABU HASSAN SHAARI MD NOR
& TAMAT SARMIDI
Faculty of Economics and Management, Universiti
Kebangsaan Malaysia,
43600 Bangi, Selangor, Malaysia
Received: 27 February 2013/Accepted: 13 February 2014
ABSTRACT
Linear time series models are not able to capture the behaviour of
many financial time series, as in the cases of exchange rates and stock market
data. Some phenomena, such as volatility and structural breaks in time series
data, cannot be modelled implicitly using linear time series models. Therefore,
nonlinear time series models are typically designed to accommodate for such
nonlinear features. In the present study, a nonlinearity test and a structural
change test are used to detect the nonlinearity and the break date in three ASEAN currencies,
namely the Indonesian Rupiah (IDR), the Malaysian Ringgit (MYR) and the Thai Baht (THB).
The study finds that the null hypothesis of linearity is rejected and evidence
of structural breaks exist in the exchange rates series. Therefore, the
decision to use the self-exciting threshold autoregressive (SETAR) model in the
present study is justified. The results showed that the SETAR model, as a regime
switching model, can explain abrupt changes in a time series. To evaluate the
prediction performance of SETAR model, an Autoregressive Integrated
Moving Average (ARIMA) model used as a benchmark. In order to
increase the accuracy of prediction, both models are combined with an
exponential generalised autoregressive conditional heteroscedasticity (EGARCH)
model. The prediction results showed that the construct model of SETAR-EGARCH performs better than that of the ARIMA model and the
combined ARIMA and EGARCH model. The results indicated that
nonlinear models give better fitting than linear models.
Keywords: EGARCH; exchange rate; nonlinearity; SETAR
ABSTRAK
Model siri masa linear tidak mampu menghuraikan
tingkah laku kebanyakan data siri masa pasaran tukaran asing dan pasaran saham. Fenomena seperti kemeruapan dan perubahan
struktur dalam data kadar pertukaran tidak dapat
dipadankan dengan baik menggunakan model siri masa linear. Justeru,
model tak linear diperlukan bagi mengambil kira ciri-ciri ketaklinearan. Dalam kajian ini, ujian ketaklinearan dan perubahan struktur digunakan bagi
mengesan kewujudan kedua-dua ciri tersebut menggunakan data kadar pertukaran bagi tiga negara ASEAN terpilih, iaitu Indonesia Rupiah,
Ringgit Malaysia dan Baht Thailand. Kajian ini mendapati bahawa hipotesis nol
kelinearan ditolak dan bukti pecah struktur wujud dalam siri kadar pertukaran. Oleh itu, keputusan untuk menggunakan model sendiri-rangsang ambang
autoregresi (SETAR)
dalam kajian ini adalah dibenarkan. Kajian menunjukkan bahawa model SETAR,
sebagai model pensuisan rejim, dapat menjelaskan perubahan mendadak dalam siri
masa. Untuk menilai prestasi ramalan model SETAR, satu model
autoregresi bersepadu purata bergerak (ARIMA) digunakan sebagai penanda aras. Dalam usaha untuk meningkatkan ketepatan ramalan,
kedua-dua model digabungkan dengan eksponen model am autoregresi
heteroskedastisiti bersyarat (EGARCH). Keputusan ramalan
menunjukkan bahawa model konstruk daripada SETAR-EGARCH adalah lebih
baik daripada model ARIMA serta gabungan model ARIMA dan EGARCH. Keputusan menunjukkan bahawa model tak linear memberi pemasangan
lebih baik daripada model linear.
Kata kunci: EGARCH; kadar pertukaran; ketaklinearan; SETAR
REFERENCES
Bergman, U.M. & Hansson, J. 2005. Real
exchange rates and switching regimes. Journal of International Money and
Finance 24: 121-138.
Boero, G. & Marrocu, E. 2004. The
performance of SETAR models: A regime conditional evaluation of point, interval
and density forecasts. International Journal of Forecasting 20: 305-320.
Bollerslev, T. 1986. Generalized autoregressive
conditional heteroscedasticity. Journal of Econometrics 31: 307-327.
Box, G.E.P. & Jenkins,
G.M. 1976. Time Series Analysis, Forecasting and
Control. San Francisco: Holden Day.
Brock, W.A., Dechert, W.D. & Scheinkman, J.
1987. A test for independence based on the correlation dimension. SSRI Working Paper, No. 8702. Department
of Economics. University of Wisconsin at Madison.
Brown, B.L., Durbin, J.
& Evan, J.M. 1975. Techniques for testing the constancy of regression relationships
over time. Journal of the Royal Statistical Society B 35:
149-192.
Chappell, D., Padmore, J.,
Mistry, P. & Ellis, C. 1996. A threshold model for the French
franc/Deutschmark exchange rates. Journal of Forecasting 15:
155-164.
Chong, T.T.L., Lam, T.L. & Hinich, M.J.
2011. Are nonlinear trading rules profitable in the Chinese stock market?. Annals of Financial Economics. http://www.Cuhk.Edu.Hk/Eco/Staff/ Tlchung/Tlchong3.Htm.
Choudhry, T. 2005. Exchange rate volatility and
the United States exports: Evidence from Canada and Japan. Journal of
Japanese International Economics 19: 51-71.
Clements, M.P. & Smith, J. 1999. A Monte Carlo study of the forecasting performance of empirical
SETAR models. Journal of Applied Econometrics 14: 123-141.
De Gooijer, J.G. & Kumar, K. 1992. Some recent development in non-linear time series modelling,
testing and forecasting. International Journal of Forecasting 8:
135-156.
Engel, C. 1994. Can the Markov switching model
forecast exchange rates. Journal of International Economics 36: 151-165.
Feng, H. & Liu, J. 2002. A SETAR model for
Canadian GDP: Non-linearities and forecast comparisons. Working Paper EWP
0206.
Frances, H.P. & Van Dijk, D. 2000. Nonlinear Time Series in Empirical Finance. Cambridge: Cambridge University Press.
Glynn, J., Perera, N. & Verma, R. 2007. Unit
root tests and structural breaks: A survey with applications. Journal of
Quantitative Methods for Economy and Enterprise 3: 63-79.
Hendry, O.T., Olekalns, N. & Summers, P.M.
2001. Exchange rate instability: A threshold autoregressive approach. Economic
Record 77: 160-166.
Ismail Mohd Tahir &
Zaidi Isa. 2006. Modeling exchange rate
using regime switching models. Sains Malaysiana 35(2):
55-62.
Nelson, D. 1991. Conditional heteroscedasticity
in asset returns: A new approach. Econometrica 59(2): 347-370.
Peel, D.A. & Speight, A.E.H. 1998. Threshold
nonlinearities in output: Some international evidence. Applied Economics 30:
323-333.
Potter, S.M. 1995. A nonlinear
approach to U.S. GNP. Journal of Applied Econometrics 10:
109-125.
Tong, H. 1983. Threshold Models in
Non-linear Time Series Analysis. New York: Springer.
Tong, H. 1978. On a threshold model. In Pattern Recognition and Signal Processing, edited by Chen, C.H.
Amsterdam: Kluwer.
Tong, H. & Lim, K.S.L.
1980. Threshold autoregression,
limit cycles and cyclical data. Journal of the Royal Statistical Society
Series B 42: 245-292.
Tsay, R.S. 1989. Testing and modelling threshold
autoregressive processes. Journal of the American Statistical Association 84(405):
231-240.
Watier, L. & Richardson, S. 1995. Modelling
of an epidemiological time series by a threshold autoregressive model. The
Statistician 44(3): 353-364.
Zhang, G.P. 2003. Time series forecasting using
a hybrid ARIMA and neural network model. Neurocomputing 50: 159-175.
Zivot, E. &
Andrews, D.W.K. 1992. Further evidence on the great crash,
the oil-price shock, and the unit-root hypothesis. Journal of
Business & Economic Statistics 10(3): 251-270.
*Corresponding author; email: gharleghi.bn@gmail.com
|