Sains Malaysiana 43(10)(2014): 1623–1633
A
Unit Root Test Based on the Modified Least Squares Estimator
(Ujian Unit Akar Berdasarkan Penganggar Ubah Suai Kuasa Dua Terkecil)
WARARIT PANICHKITKOSOLKUL*
Department of Mathematics and
Statistics, Faculty of Science and Technology
Thammasat University, Phathum Thani, Thailand
Received:
3 January 2013/Accepted: 13 February 2014
ABSTRACT
A unit root test based on the modified least squares (MLS)
estimator for first-order autoregressive process is proposed and compared with
unit root tests based on the ordinary least squares (OLS), the weighted
symmetric (WS)
and the modified weighted symmetric (MWS) estimators. The percentiles of the null
distributions of the unit root test are also reported. The empirical probabilities
of type I error and powers of the unit root tests were estimated via Monte
Carlo simulation. The simulation results showed that all unit root tests can
control the probability of type I error for all situations. The empirical power
of the test is higher than the other unit root tests, and Apart from that, the and tests also provide the highest empirical power. As
an illustration, the monthly series of U.S. nominal interest rates on
three-month treasury bills is analyzed.
Keywords: First-order autoregressive; ordinary least squares
estimator; unit root test; weighted symmetric estimator
ABSTRAK
Suatu ujian unit akar berdasarkan anggaran ubah suai kuasa dua terkecil (MLS) untuk proses autoregrasi peringkat pertama yang dicadang dan dibandingkan dengan penganggaran ujian unit akar yang berasaskan kuasa dua terkecil biasa (OLS), dengan wajaran simetri (WS) dan yang wajaran simetri ubah suai (MWS). Peratusan taburan nol ujian unit akar juga dilaporkan. Kebarangkalian empirikal daripada jenis ralat I dan kuasa ujian unit akar dianggarkan melalui simulasi Monte Carlo. Keputusan simulasi menunjukkan bahawa semua ujian unit akar boleh mengawal kemungkinan jenis ralat I untuk semua keadaan. Kuasa empirikal ujian adalah lebih tinggi daripada lain-lain ujian unit akar seperti dan Selain itu, dalam ujian dan juga memberikan kuasa empirikal yang tertinggi. Sebagai ilustrasi, siri bulanan kadar faedah nominal US pada bil perbendaharaan tiga bulan dianalisis.
Kata kunci: Autoregrasi peringkat pertama; penganggar kuasa dua terkecil biasa; penganggar wajaran simetri; ujian unit akar
REFERENCES
Bradley, J.V. 1978. Robustness?. British Journal of Mathematical and Statistical Psychology 31: 144-152.
Brockwell, P.J. & Davis, R.A. 1991. Time Series:
Theory and Methods. New York: Springer.
Denby, L. & Martin, R.D. 1979. Robust
estimation of the first-order autoregressive parameter. Journal of
the American Statistical Association 74: 140-146.
Dickey, D.A. & Fuller, W.A. 1979. Distribution of estimators for autoregressive time series with a
unit root. Journal of the American Statistical Association 74:
427-431.
Dickey, D.A. & Fuller, W.A. 1981. Likelihood
ratio statistics for autoregressive time series with a unit root. Econometrica 49: 1057-1072.
Fuller, W.A. 1996. Introduction
to Statistical Time Series. 2nd ed. New Jersey:
John Wiley & Sons.
Fuller, W.A. 1976. Introduction
to Statistical Time Series. New Jersey: John Wiley & Sons.
Gonzalez-Farias, G.M. &
Dickey, D.A. 1992. An
unconditional maximum likelihood test for a unitroot. 1992 Proceedings of the Business and Economic Statistics
Section. American Statistical Association. pp. 139-143.
Guo, J.H. 2000. Robust estimation
for the coefficient of a first order autoregressive process. Communications
in Statistics - Theory and Methods 29: 55-66.
Hall, A. 1989. Testing for a unit root in the presence of
moving average errors. Biometrika 76:
49-56.
Hamilton, J.D. 1994. Time
Series Analysis. New Jersey: Princeton University Press.
Ihaka, R. & Gentleman, R. 1996. R: A language for
data analysis and graphics. Journal of Computational and Graphical
Statistics 5: 299-314.
Lucas, A. 1995. Unit root tests based on M
estimators. Econometric Theory 11: 331-346.
Mann, H.B. & Wald, A. 1943. On the statistical treatment of linear stochastic difference
equations. Econometrica 11:
173-220.
Marriott, F.H.C. & Pope, J.A. 1954. Bias in the estimation of autocorrelations. Biometrika 41: 390-402.
Newbold, P. & Agiakloglou,
C. 1993. Bias in the sample autocorrelations of fractional
noise. Biometrika 80: 698-702.
Pantula, S.G. & Hall, A. 1991. Testing for unit
roots in autoregressive moving average models: An instrumental variable
approach. Journal of Econometrics 48: 325-353.
Paparoditis, E. & Politis,
D.N. 2005. Bootstrapping unit root tests for autoregressive time series. Journal
of the American Statistical Association 100: 545-553.
Park, J.Y. 2003. Bootstrap unit root tests. Econometrica 71: 1845-1895.
Park, H.J. & Fuller, W.A. 1995. Alternative
estimators and unit root tests for the autoregressive process. Journal of
Time Series Analysis 16: 415-429.
Phillips, P.C.B. 1987. Time
series regression with a unit root. Econometrica 55: 277-301.
Phillips, P.C.B. & Perron,
P. 1988. Testing for a unit root in time series regression. Biometrika 75: 335-346.
Said, S.E. & Dickey, D.A. 1984. Testing for
unit root in autoregressive moving-average models with unknown order. Biometrika 71: 599-607.
Said, S.E. & Dickey, D.A. 1985. Hypothesis
testing in ARIMA(p,1,q) models. Journal
of the American Statistical Association 80: 369-374.
Shaman, P. & Stine,
R.A. 1988. The bias
of autoregressive coefficient estimators. Journal of the American
Statistical Association 83: 842-848.
Shin, D.W. & So, B.S.
1999. Unit root tests based on
adaptive maximum likelihood estimation. Econometric Theory 15:
1-23.
The R Development Core Team. 2012a. An Introduction to R.
Vienna: R Foundation for Statistical Computing.
The R Development Core Team. 2012b. R: A Language and Environment for Statistical
Computing. Vienna: R Foundation for Statistical Computing.
Youssef, A.H. 2008. A new estimator for
the unit root. Journal of Statistical Computation and Simulation 78:
515-526.
*Corresponding
author; email: wararit@mathstat.sci.tu.ac.th
|