Sains Malaysiana 43(11)(2014): 1665–1671

 

Growth Characteristics, Water and Nitrogen Use Efficiencies of Spinach

in Different Water and Nitrogen Levels

(Ciri Pertumbuhan, Air dan Kecekapan Penggunaan Nitrogen Bayam

dalam Tahap Air dan Nitrogen yang Berbeza)

 

 

JINXIU ZHANG1,2, ZHIGANG BEI3, YI ZHANG2 & LINKUI CAO2*

 

1School of Environmental Science and Engineering, Shanghai Jiao Tong University

Shanghai 200240, China

 

2Key Laboratory of Urban Agriculture, Ministry of Agriculture, P.R.C., Shanghai 200240, China

 

3Water Science and Technology Park in Qingpu District, Shanghai, 201700, China

 

Received: 24 October 2013/Accepted: 20 March 2014

 

ABSTRACT

Water deficit and environmental pollution owing to excessive nitrogen use have caused considerable attention. In a field experiment, a combination of three water levels (20, 40 and 60 cm) and nitrogen fertilizer rates (0, 85 and 170 kg ha-1) was applied. The main objectives of this study were to optimize water and nitrogen application and exploit their interactive effects on the growth characteristics, yield and water and nitrogen use efficiency of spinach. The results showed that water and nitrogen significantly influenced average plant height and leaf area. Total aboveground biomass (TB) was affected by nitrogen fertilizer and TB decreased in water deficit. Adding nitrogen fertilizer amount resulted in higher leaf chlorophyll content and chlorophyll content obtained the maximum value in N2 treatment, but chlorophyll content was not affected by water deficit. Spinach yield was higher at N1 compared with N0 and N2 at all water levels. Abundant water supply resulted in the highest spinach yield, but yield reduced at lower water level (W3). The correlation analysis between spinach yield and leaf number was relatively weak (R2=0.58). On the contrast, the correlation analysis between spinach yield and leaf weight showed a correlationship (R2=0.91), indicating that leaf weight was the primary reason for yield increase in all treatments. Nitrogen fertilization significantly decreased NUE in all the treatments. WUE of spinach increased with adding nitrogen application in most conditions.

 

Keywords: Biomass; growth; nitrogen use efficiency; water; yield

 

ABSTRAK

Defisit air dan pencemaran alam sekitar yang disebabkan oleh penggunaan nitrogen secara berlebihan telah mendapat perhatian umum. Dalam kajian yang dijalankan, gabungan tiga peringkat air (20, 40 dan 60 cm) dan kadar baja nitrogen (0, 85 dan 170 kg ha-1) telah digunakan. Objektif utama kajian ini adalah untuk mengoptimumkan aplikasi air dan nitrogen dan mengeksploitasi kesan interaktif ciri-ciri pertumbuhan, hasil serta air dan nitrogen menggunakan kecekapan bayam. Hasil kajian menunjukkan bahawa air dan nitrogen ketara mempengaruhi purata ketinggian pokok dan luas daun. Jumlah biojisim atas permukaan tanah (TB) terjejas akibat baja nitrogen dan TB menurun dalam defisit air. Tambahan jumlah baja nitrogen telah meningkatkan kandungan klorofil daun yang tinggi dan kandungan klorofil telah mencapai nilai maksimum dalam rawatan N2 tetapi kandungan klorofil tidak terjejas akibat kekurangan air. Hasil bayam adalah lebih tinggi pada N1 berbanding N0 dan N2 dalam semua peringkat air. Bekalan air yang banyak telah menghasilkan jumlah bayam yang tinggi, tetapi hasil berkurangan pada tahap air yang lebih rendah (W3). Analisis korelasi antara hasil bayam dan jumlah daun adalah agak lemah (R2= 0.58). Sebaliknya, analisis korelasi antara hasil bayam dan berat daun menunjukkan hubungan korelasi (R2= 0.91) yang menunjukkan bahawa berat daun adalah sebab utama peningkatan hasil dalam semua rawatan. Pembajaan nitrogen ketara menurunkan NUE dalam semua rawatan. WUE bayam meningkat dengan penambahan aplikasi nitrogen dalam kebanyakan keadaan.

 

Kata kunci: Air; biojisim; hasil; kecekapan penggunaan nitrogen; pertumbuhan

REFERENCES

 

Achten, W.M.J., Maes, W.H., Reubens, B., Mathijs, E., Singh, V.P., Verchot, L. & Muys, B. 2010. Biomass production and allocation in Jatropha curcasL. seedlings under different levels of drought stress. Biomass and Bioenergy 34: 667-676.

Anonymous. 2008. FAO Statistical Yearbook.

Badr, M.A., El-Tohamy, W.A. & Zaghloul, A.M. 2012. Yield and water use efficiency of potato grown under different irrigation and nitrogen levels in an arid region. Agricultural Water Management 110: 9-15.

Cantliffe, D. 1972. Nitrate accumulation in vegetable crops as affected by photoperiod and light duration. Journal of the American Society for Horticultural Science 97: 414-418.

Celette, F. & Gary, C. 2013. Dynamics of water and nitrogen stress along the grapevine cycle as affected by cover cropping. European Journal of Agronomy 45: 142-152.

Collins, M. & McCoy, J.E. 1997. Chicory productivity, forage quality, and response to nitrogen fertilization. Agronomy Journal 89: 232-238.

Darwish, T., Atallah, T., Hajhasan, S. & Chranek, A. 2003. Management of nitrogen by fertigation of potato in Lebanon. Nutrient Cycling in Agroecosystems67: 1-11.

Estrada-Campuzano, G., Slafer, G.A. & Miralles, D.J. 2012. Differences in yield, biomass and their components between triticale and wheat grown under contrasting water and nitrogen environments. Field Crops Research 128: 167-179.

Golombek, S. & Al-Ramamneh, E.A.D. 2002. Drought tolerance mechanisms of pearl millet. Challenges to Organic Farming and Sustainable Land Use in the Tropics and Subtropics Proceedings. University of Kassel, Institute of Crop Science, Germany. October 9-11.

Li, X., Liu, F., Li, G., Lin, Q. & Jensen, C.R. 2010. Soil microbial response, water and nitrogen use by tomato under different irrigation regimes. Agricultural Water Management 98: 414-418.

Meyer, R.D. & Marcum, D.B. 1998. Potato yield, petiole nitrogen, and soil nitrogen response to water and nitrogen. Agronomy Journal 90: 420-429.

Nagaz, K., Toumi, I., Mahjoub, T., Masmoudi, M.M. & Mechlia, N.B. 2009. Yield and water-use efficiency of pearl millet (Pennisetum glaucum(L.) R. Br.) under deficit irrigation with saline water in arid conditions of Southern Tunisia. Research Journal of Agronomy 3: 9-17.

Nishihara, E., Inoue, M., Kondo, K., Takahashi, K. & Nakata, N. 2001. Spinach yield and nutritional quality affected by controlled soil water matric head. Agricultural Water Management 51: 217-229.

Onder, S., Caliskan, M.E., Onder, D. & Caliskan, S. 2005. Different irrigation methods and water stress effects on potato yield and yield components. Agricultural Water Management 73: 73-86.

Pandey, R., Maranville, J. & Admou, A. 2000. Deficit irrigation and nitrogen effects on maize in a Sahelian environment: I. Grain yield and yield components. Agricultural Water Management 46: 1-13.

Patanè, C. & Cosentino, S.L. 2010. Effects of soil water deficit on yield and quality of processing tomato under a Mediterranean climate. Agricultural Water Management 97: 131-138.

Patanè, C. 2011. Leaf area index, leaf transpiration and stomatal conductance as affected by soil water deficit and VPD in processing tomato in semi arid mediterranean climate. Journal of Agronomy and Crop Science 197: 165-176.

Patel, N. & Rajput, T.B.S. 2007. Effect of drip tape placement depth and irrigation level on yield of potato. Agricultural Water Management 88: 209-223.

Payero, J.O., Melvin, S.R., Irmak, S. & Tarkalson, D. 2006. Yield response of corn to deficit irrigation in a semiarid climate. Agricultural Water Management 84: 101-112.

Poorter, H. & Nagel, O. 2000. The role of biomass allocation in the growth response of plants to different levels of light, CO2, nutrients and water: A quantitative review. Functional Plant Biology 27: 595-607.

Seghatoleslami, M., Kafi, M. & Majidi, E. 2008. Effect of deficit irrigation on yield, WUE and some morphological and phenological traits of three millet species. Pakistan Journal of Botany 40: 1555-1560.

Soler, C., Hoogenboom, G., Sentelhas, P. & Duarte, A. 2007. Impact of water stress on maize grown off-season in a subtropical environment. Journal of Agronomy and Crop Science 193: 247-261.

Stone, P., Wilson, D., Reid, J. & Gillespie, R. 2000. Water deficit effects on sweet corn. I. Water use, radiation use efficiency, growth, and yield. Crop and Pasture Science 52: 103-113.

Sun, Y.J., Sun, Y.Y., Li, X.Y., Guo, X. & Ma, J. 2009. Relationship of nitrogen utilization and activities of key enzymes involved in nitrogen metabolism in rice under water–nitrogen interaction. Acta Agronomica Sinica35: 2055-2063.

Sun, Y., Ma, J., Sun, Y., Xu, H., Yang, Z., Liu, S., Jia, X. & Zheng, H. 2012. The effects of different water and nitrogen managements on yield and nitrogen use efficiency in hybrid rice of China. Field Crops Research 127: 85-98.

Vandoorne, B., Mathieu, A.S., Van den Ende, W., Vergauwen, R., Périlleux, C., Javaux, M. & Lutts, S. 2012. Water stress drastically reduces root growth and inulin yield in Cichorium intybus(var. sativum) independently of photosynthesis. Journal of Experimental Botany 63: 4359-4373.

Waddell, J., Gupta, S.C., Moncrief, J.F., Rosen, C.J. & Steele, D. 1999. Irrigation and nitrogen management effects on potato yield, tuber quality, and nitrogen uptake. Agronomy Journal 91: 991-997.

Wang, F.X., Kang, Y. & Liu, S.P. 2006. Effects of drip irrigation frequency on soil wetting pattern and potato growth in North China Plain. Agricultural Water Management 79: 248-264.

Wu, F., Bao, W., Li, F. & Wu, N. 2008. Effects of drought stress and N supply on the growth, biomass partitioning and water-use efficiency of Sophora davidii seedlings. Environmental and Experimental Botany 63: 248-255.

Zhang, L., Gao, L., Zhang, L., Wang, S., Sui, X. & Zhang, Z. 2012. Alternate furrow irrigation and nitrogen level effects on migration of water and nitrate-nitrogen in soil and root growth of cucumber in solar-greenhouse. Scientia Horticulturae138: 43-49.

 

 

*Corresponding author; email: clk2001@126.com

 

 

 

previous