Sains Malaysiana 43(11)(2014):
1699–1705
Comparison
of Bioproduct Quality from Vermiconversion of Spent Pleurotus Sajor-Caju Compost
and Commercial Livestock Excreta
(Perbandingan Kualiti Produk Bio daripada Pengolahan Vermi untuk Kompos Pleurotus Sajor-Caju
dan Sisa Najis Ternakan Komersial)
A.B. AZIZI*, M.S. SHAFIZA, Z.M. NOOR & NOORLIDAH ABDULLAH
Mushroom Research Centre, Institute of
Biological Sciences, Faculty of Science,
University of Malaya, 50603 Kuala
Lumpur, Malaysia
Received: 27 February 2013/Accepted: 3 March 2014
ABSTRACT
Vermiconversion study was conducted to compare the use of
commercial livestock excreta i.e. cow dung (CD) and goat manure (GM)
in the vermiconversion of spent mushroom compost (SMC) utilising red worms
i.e. Lumbricus rubellus to
obtain good quality compost with high nutrient content. This study was
performed for 70 days after 21 days of pre-composting at different ratios of
livestock excreta and SMC. The highest multiplication and growth of
earthworms in number and biomass was recorded in TE with increment of
+296.57 and +484.20%, respectively. Moreover, paired samples t-test indicated a
significant difference (p<0.05) in earthworms’ number and biomass.
The results for non-mixed substrate showed, CD (TA) bioproduct obtained,
contained the highest concentration in exchangeable K (1.98%). However, GM (TD)
vermicompost recorded the highest content of total N (1.66%) and available P
(0.64%). In conclusion, 50% of GM is recommended in vermiculture as well as
producing nutrient enriched bioproduct compared with CD with SMC as bulking agent.
Furthermore, heavy metal i.e. Cd, Cr, Pb, Cu and Zn content in bioproduct
produced from all treatments were lower compared to compost limits set by USA,
European countries and Malaysian Recommended Site Screening Levels for
Contaminated Land (SSLs).
Keywords: Earthworms; livestock waste; nutrient element; spent
mushroom substrate; vermitechnology
ABSTRAK
Penyelidikan pengolahan vermi dilakukan untuk membandingkan beza kegunaan
antara sisa najis ternakan komersial iaitu najis lembu (CD) dan najis kambing (GM)
dalam pengolahan vermi kompos cendawan terpakai (SMC) dengan menggunakan
cacing merah iaitu Lumbricus rubellus untuk
menghasilkan baja kompos vermi yang berkualiti dengan kandungan nutrien yang
tinggi. Kajian ini dijalankan selama 70 hari selepas 21 hari
pra-pengomposan dalam pelbagai nisbah sisa najis ternakan dan SMC. Peningkatan tertinggi bilangan dan biojisim cacing tanah direkodkan
dalam TE dengan
peningkatan +296.57 dan +484.20%. Tambahan pula, ujian-t sampel
berpasangan menunjukkan perbezaan yang signifikan (p<0.05) dalam
bilangan dan biojisim cacing tanah. Keputusan untuk substrat
tidak bercampur menunjukkan CD (TA) menghasilkan bio produk yang mengandungi
kandungan K yang boleh bertukar tertinggi (1.98%). Manakala
kompos vermi GM (TD) mencatatkan nilai tertinggi untuk
keseluruhan N (1.66%) dan sedia ada P (0.64%). Kesimpulannya, 50% GM
adalah digalakkan untuk dijadikan sebagai agen pukal dalam kultur vermi berserta penghasilan bio produk yang kaya dengan nutrien berbanding CD dan SMC.
Selain itu, kandungan logam berat iaitu Cd, Cr, Pb, Cu dan Zn di dalam bio
produk terhasil daripada semua perlakuan adalah lebih rendah berbanding had
kompos yang ditetapkan oleh USA, negara-negara Eropah dan Cadangan Aras
Pemerhatian Tapak untuk Tanah Tercemar Malaysia (SSLs).
Kata kunci: Cacing tanah; elemen nutrien; sisa ternakan; substrat
cendawan terpakai; teknologi vermi
REFERENCES
Azizi, A.B., Lim, M.P.M., Noor, Z.M. & Noorlidah, A.
2013. Vermiremoval of heavy metal in sewage sludge by
utilising Lumbricus rubellus. Ecotoxicology and Environmental
Safety 90: 13-20.
Azizi, A.B., Noor, Z.M., Noorlidah, A. & Rosna, M.T.
2012. Bioconversion of biomass residue from the cultivation of pea sprouts on
spent Pleurotus sajor-caju compost employing Lumbricus rubellus. Maejo
International Journal of Science and Technology 6(3): 461-469.
Azizi, A.B., Noor, Z.M., Jaime, A.T.d.S., Noorlidah Abdullah
& Adi, A.J. 2011. Vermicomposting of sewage sludge by Lumbricus rubellus using spent mushroom compost as feed material: Effect on concentration of
heavy metals. Biotechnology and Bioprocess Engineering 16(5): 1036-
1043.
Bansal, S. & Kapoor, K.K. 2000. Vermicomposting
of crop residues and cattle dung with Eisenia foetida. Bioresource
Technology 73: 95-98.
Bernal, M.P., Alburquerque, J.A. &
Moral, R. 2009. Composting of animal manures and
chemical criteria for compost maturity assessment: A review. Bioresource
Technology 100(22): 5444-5453.
Bishop, P.L. & Godfrey, C. 1983. Nitrogen
transformation during sewage composting. Biocycle 24: 34-39.
Bremner, J.M. & Mulvaney, R.G. 1982. Nitrogen total. In Methods
of Soil Analysis, edited by Page, A.L., Miller, R.H. & Keeney, D.R. Madison: American Society of Agronomy. pp. 575-624.
Brinton, W.F. 2000. Compost
Quality Standards and Guidelines. Report to New York State ssociation of
Recyclers by Woods Ends Research Laboratory Inc. USA. p. 15.
Crawford, J.H. 1983. Review of composting. Process
Biochemistry 18: 14-15.
Department of Environment, Malaysia (DOE) 2009. Contaminated
Land Management and Control Guidelines No.1: Malaysian Recommended Sites
Screening Levels for Contaminated Land. Retrieved from: http://www.doe.gov.my.
Dominguez, J. & Edwards, C.A. 2004. Vermicomposting
organic wastes: A review. In Soil Zoology for Sustainable Development in the
21st Century, edited by Hanna, S.H.S. & Mikhail, W.Z.A.
Cairo. pp. 369-395.
Gunadi, B., Edwards, C.A. &
Arancon, Q. 2002. Changes in trophic
structure of soil arthropods after the application of vermicomposts. European
Journal of Soil Biology 381: 61-165.
Fernández-Gómez, M.J., Romero, E. &
Nogales, R. 2010. Feasibility of
vermicomposting of vegetable greenhouse waste recycling. Bioresource
Technology 101: 9654-9660.
John, M.K. 1970. Colorimetric
determination of phosphorous in soil and plant materials with ascorbic acid. Soil Science 109: 214-220.
Khwairakpam, M. & Bhargava, R.
2009. Bioconversion of
filter mud using vermicomposting employing two exotic and one local earthworm
species. Bioresource Technology 100: 5846-5852.
Kulcu, R., Sonmez, I., Yaldiz, O. &
Kaplan, M. 2008. Composting of spent mushroom compost,
carnation wastes, chicken and cattle manures. Bioresource Technology 99:
8259-8264.
Le Bayon, R.C. & Binet, F. 2006. Earthworm changes the distribution and availability of
phosphorous in organic substrates. Soil Biology & Biochemistry 38:
235-246.
Lim, S.L., Wu, T.Y., Sim, E.Y.S., Lim, P.N. & Charles,
C. 2012. Biotransformation of rice husk into organic
fertilizer through vermicomposting. Ecological Engineering 41:
60-64.
Loh, T.C., Lee, Y.C., Liang, J.B. &
Tan, D. 2005. Vermicomposting of cattle and goat
manures by Eisenia foetida and their growth and reproduction
performance. Bioresource Technology 96: 111-114.
Ndegwa, P.M., Thompson, S.A. & Das, K.C. 1999. Effects
of stocking density and feeding rate on vermicomposting of biosolids. Bioresource
Technology 71: 5-12.
Plaza, C., Nogales, R., Senesi, N.,
Benitez, E. & Polo, A. 2007. Organic matter humification by vermicomposting of cattle manure alone
and mixed with two-phase olive pomace. Bioresource Technology 9:
5085-5089.
Prakash, M. & Karmegam, N. 2010. Vermistabilization of press mud using Perionyx
ceylanensis Mich. Bioresource Technology 101: 8464-8468.
Shahack-Gross, R. 2010. Herbivorous livestock dung: Formation, taphonomy, methods
for identification and archaeological significance. Journal of
Archaeological Science 38(2): 205-218.
Suthar, S. 2010. Recycling of agro-industrial sludge through
vermitechnology. Ecological Engineering 36: 1028-1036.
Suthar, S. 2008. Bioconversion of post-harvest crop residues
and cattle shed manure into value-added products using earthworms Eudrilus
eugeniae Kinberg. Ecological Enginering 32: 206-214.
Tripathi, G. & Bhardwaj, P. 2004. Comparative
studies on biomass production, life cycles and composting efficiency of Eisenia
foetida (Savigny) and Lampito mauritii (Kinberg). Bioresource
Technology 92: 275-278.
Walkley, A. & Black, I.A. 1934. Estimation of organic
carbon by the chronic acid titration method. Soil Science 37:
29-31.
Yadav, A. & Garg,
V.K. 2010. Recycling of organic waste by employing Eisenia foetida. Bioresource
Technology 102(3): 2874-2880.
*Corresponding
author; email: azizi.br@um.edu.my
|