Sains Malaysiana 43(11)(2014): 1699–1705

 

Comparison of Bioproduct Quality from Vermiconversion of Spent Pleurotus Sajor-Caju Compost and Commercial Livestock Excreta

(Perbandingan Kualiti Produk Bio daripada Pengolahan Vermi untuk Kompos  Pleurotus Sajor-Caju

dan Sisa Najis Ternakan Komersial)

 

 

A.B. AZIZI*, M.S. SHAFIZA, Z.M. NOOR & NOORLIDAH ABDULLAH

Mushroom Research Centre, Institute of Biological Sciences, Faculty of Science,

University of Malaya, 50603 Kuala Lumpur, Malaysia

 

Received: 27 February 2013/Accepted: 3 March 2014

 

 

ABSTRACT

Vermiconversion study was conducted to compare the use of commercial livestock excreta i.e. cow dung (CD) and goat manure (GM) in the vermiconversion of spent mushroom compost (SMC) utilising red worms i.e. Lumbricus rubellus to obtain good quality compost with high nutrient content. This study was performed for 70 days after 21 days of pre-composting at different ratios of livestock excreta and SMC. The highest multiplication and growth of earthworms in number and biomass was recorded in TE with increment of +296.57 and +484.20%, respectively. Moreover, paired samples t-test indicated a significant difference (p<0.05) in earthworms’ number and biomass. The results for non-mixed substrate showed, CD (TA) bioproduct obtained, contained the highest concentration in exchangeable K (1.98%). However, GM (TD) vermicompost recorded the highest content of total N (1.66%) and available P (0.64%). In conclusion, 50% of GM is recommended in vermiculture as well as producing nutrient enriched bioproduct compared with CD with SMC as bulking agent. Furthermore, heavy metal i.e. Cd, Cr, Pb, Cu and Zn content in bioproduct produced from all treatments were lower compared to compost limits set by USA, European countries and Malaysian Recommended Site Screening Levels for Contaminated Land (SSLs).

 

Keywords: Earthworms; livestock waste; nutrient element; spent mushroom substrate; vermitechnology

 

ABSTRAK

Penyelidikan pengolahan vermi dilakukan untuk membandingkan beza kegunaan antara sisa najis ternakan komersial iaitu najis lembu (CD) dan najis kambing (GM) dalam pengolahan vermi kompos cendawan terpakai (SMC) dengan menggunakan cacing merah iaitu Lumbricus rubellus untuk menghasilkan baja kompos vermi yang berkualiti dengan kandungan nutrien yang tinggi. Kajian ini dijalankan selama 70 hari selepas 21 hari pra-pengomposan dalam pelbagai nisbah sisa najis ternakan dan SMC. Peningkatan tertinggi bilangan dan biojisim cacing tanah direkodkan dalam TE dengan peningkatan +296.57 dan +484.20%. Tambahan pula, ujian-t sampel berpasangan menunjukkan perbezaan yang signifikan (p<0.05) dalam bilangan dan biojisim cacing tanah. Keputusan untuk substrat tidak bercampur menunjukkan CD (TA) menghasilkan bio produk yang mengandungi kandungan K yang boleh bertukar tertinggi (1.98%). Manakala kompos vermi GM (TD) mencatatkan nilai tertinggi untuk keseluruhan N (1.66%) dan sedia ada P (0.64%). Kesimpulannya, 50% GM adalah digalakkan untuk dijadikan sebagai agen pukal dalam kultur vermi berserta penghasilan bio produk yang kaya dengan nutrien berbanding CD dan SMC. Selain itu, kandungan logam berat iaitu Cd, Cr, Pb, Cu dan Zn di dalam bio produk terhasil daripada semua perlakuan adalah lebih rendah berbanding had kompos yang ditetapkan oleh USA, negara-negara Eropah dan Cadangan Aras Pemerhatian Tapak untuk Tanah Tercemar Malaysia (SSLs).

 

Kata kunci: Cacing tanah; elemen nutrien; sisa ternakan; substrat cendawan terpakai; teknologi vermi

REFERENCES

Azizi, A.B., Lim, M.P.M., Noor, Z.M. & Noorlidah, A. 2013. Vermiremoval of heavy metal in sewage sludge by utilising Lumbricus rubellus. Ecotoxicology and Environmental Safety 90: 13-20.

Azizi, A.B., Noor, Z.M., Noorlidah, A. & Rosna, M.T. 2012. Bioconversion of biomass residue from the cultivation of pea sprouts on spent Pleurotus sajor-caju compost employing Lumbricus rubellus. Maejo International Journal of Science and Technology 6(3): 461-469.

Azizi, A.B., Noor, Z.M., Jaime, A.T.d.S., Noorlidah Abdullah & Adi, A.J. 2011. Vermicomposting of sewage sludge by Lumbricus rubellus using spent mushroom compost as feed material: Effect on concentration of heavy metals. Biotechnology and Bioprocess Engineering 16(5): 1036- 1043.

Bansal, S. & Kapoor, K.K. 2000. Vermicomposting of crop residues and cattle dung with Eisenia foetida. Bioresource Technology 73: 95-98.

Bernal, M.P., Alburquerque, J.A. & Moral, R. 2009. Composting of animal manures and chemical criteria for compost maturity assessment: A review. Bioresource Technology 100(22): 5444-5453.

Bishop, P.L. & Godfrey, C. 1983. Nitrogen transformation during sewage composting. Biocycle 24: 34-39.

Bremner, J.M. & Mulvaney, R.G. 1982. Nitrogen total. In Methods of Soil Analysis, edited by Page, A.L., Miller, R.H. & Keeney, D.R. Madison: American Society of Agronomy. pp. 575-624.

Brinton, W.F. 2000. Compost Quality Standards and Guidelines. Report to New York State ssociation of Recyclers by Woods Ends Research Laboratory Inc. USA. p. 15.

Crawford, J.H. 1983. Review of composting. Process Biochemistry 18: 14-15.

Department of Environment, Malaysia (DOE) 2009. Contaminated Land Management and Control Guidelines No.1: Malaysian Recommended Sites Screening Levels for Contaminated Land. Retrieved from: http://www.doe.gov.my.

Dominguez, J. & Edwards, C.A. 2004. Vermicomposting organic wastes: A review. In Soil Zoology for Sustainable Development in the 21st Century, edited by Hanna, S.H.S. & Mikhail, W.Z.A. Cairo. pp. 369-395.

Gunadi, B., Edwards, C.A. & Arancon, Q. 2002. Changes in trophic structure of soil arthropods after the application of vermicomposts. European Journal of Soil Biology 381: 61-165.

Fernández-Gómez, M.J., Romero, E. & Nogales, R. 2010. Feasibility of vermicomposting of vegetable greenhouse waste recycling. Bioresource Technology 101: 9654-9660.

John, M.K. 1970. Colorimetric determination of phosphorous in soil and plant materials with ascorbic acid. Soil Science 109: 214-220.

Khwairakpam, M. & Bhargava, R. 2009. Bioconversion of filter mud using vermicomposting employing two exotic and one local earthworm species. Bioresource Technology 100: 5846-5852.

Kulcu, R., Sonmez, I., Yaldiz, O. & Kaplan, M. 2008. Composting of spent mushroom compost, carnation wastes, chicken and cattle manures. Bioresource Technology 99: 8259-8264.

Le Bayon, R.C. & Binet, F. 2006. Earthworm changes the distribution and availability of phosphorous in organic substrates. Soil Biology & Biochemistry 38: 235-246.

Lim, S.L., Wu, T.Y., Sim, E.Y.S., Lim, P.N. & Charles, C. 2012. Biotransformation of rice husk into organic fertilizer through vermicomposting. Ecological Engineering 41: 60-64.

Loh, T.C., Lee, Y.C., Liang, J.B. & Tan, D. 2005. Vermicomposting of cattle and goat manures by Eisenia foetida and their growth and reproduction performance. Bioresource Technology 96: 111-114.

Ndegwa, P.M., Thompson, S.A. & Das, K.C. 1999. Effects of stocking density and feeding rate on vermicomposting of biosolids. Bioresource Technology 71: 5-12.

Plaza, C., Nogales, R., Senesi, N., Benitez, E. & Polo, A. 2007. Organic matter humification by vermicomposting of cattle manure alone and mixed with two-phase olive pomace. Bioresource Technology 9: 5085-5089.

Prakash, M. & Karmegam, N. 2010. Vermistabilization of press mud using Perionyx ceylanensis Mich. Bioresource Technology 101: 8464-8468.

Shahack-Gross, R. 2010. Herbivorous livestock dung: Formation, taphonomy, methods for identification and archaeological significance. Journal of Archaeological Science 38(2): 205-218.

Suthar, S. 2010. Recycling of agro-industrial sludge through vermitechnology. Ecological Engineering 36: 1028-1036.

Suthar, S. 2008. Bioconversion of post-harvest crop residues and cattle shed manure into value-added products using earthworms Eudrilus eugeniae Kinberg. Ecological Enginering 32: 206-214.

Tripathi, G. & Bhardwaj, P. 2004. Comparative studies on biomass production, life cycles and composting efficiency of Eisenia foetida (Savigny) and Lampito mauritii (Kinberg). Bioresource Technology 92: 275-278.

Walkley, A. & Black, I.A. 1934.  Estimation of organic carbon by the chronic acid titration method. Soil Science 37: 29-31.

Yadav, A. & Garg, V.K. 2010. Recycling of organic waste by employing Eisenia foetida. Bioresource Technology 102(3): 2874-2880.

 

 

*Corresponding author; email: azizi.br@um.edu.my

 

 

previous