| Sains Malaysiana 43(11)(2014):
          1699–1705
  
         
             
           Comparison
            of Bioproduct Quality from Vermiconversion of Spent Pleurotus Sajor-Caju Compost
            and Commercial Livestock Excreta (Perbandingan Kualiti Produk Bio daripada Pengolahan Vermi untuk Kompos  Pleurotus Sajor-Caju
            
           dan Sisa Najis Ternakan Komersial)
            
           
             
           
             
           A.B. AZIZI*, M.S. SHAFIZA, Z.M. NOOR & NOORLIDAH ABDULLAH
            
           Mushroom Research Centre, Institute of
            Biological Sciences, Faculty of Science,
            
           University of Malaya, 50603 Kuala
            Lumpur, Malaysia
            
           
             
           Received: 27 February 2013/Accepted: 3 March 2014
            
           
             
           
             
           ABSTRACT
            
           Vermiconversion study was conducted to compare the use of
            commercial livestock excreta i.e. cow dung (CD) and goat manure (GM)
            in the vermiconversion of spent mushroom compost (SMC) utilising red worms
            i.e. Lumbricus rubellus to
              obtain good quality compost with high nutrient content. This study was
              performed for 70 days after 21 days of pre-composting at different ratios of
              livestock excreta and SMC. The highest multiplication and growth of
              earthworms in number and biomass was recorded in TE with increment of
              +296.57 and +484.20%, respectively. Moreover, paired samples t-test indicated a
              significant difference (p<0.05) in earthworms’ number and biomass.
                The results for non-mixed substrate showed, CD (TA) bioproduct obtained,
                contained the highest concentration in exchangeable K (1.98%). However, GM (TD)
                vermicompost recorded the highest content of total N (1.66%) and available P
                (0.64%). In conclusion, 50% of GM is recommended in vermiculture as well as
                producing nutrient enriched bioproduct compared with CD with SMC as bulking agent.
                Furthermore, heavy metal i.e. Cd, Cr, Pb, Cu and Zn content in bioproduct
                produced from all treatments were lower compared to compost limits set by USA,
                European countries and Malaysian Recommended Site Screening Levels for
                Contaminated Land (SSLs).
  
 
             
           Keywords: Earthworms; livestock waste; nutrient element; spent
            mushroom substrate; vermitechnology
  
 
             
           ABSTRAK
            
           Penyelidikan pengolahan vermi dilakukan untuk membandingkan beza kegunaan
            antara sisa najis ternakan komersial iaitu najis lembu (CD) dan najis kambing (GM)
            dalam pengolahan vermi kompos cendawan terpakai (SMC) dengan menggunakan
            cacing merah iaitu Lumbricus rubellus untuk
              menghasilkan baja kompos vermi yang berkualiti dengan kandungan nutrien yang
              tinggi. Kajian ini dijalankan selama 70 hari selepas 21 hari
                pra-pengomposan dalam pelbagai nisbah sisa najis ternakan dan SMC. Peningkatan tertinggi bilangan dan biojisim cacing tanah direkodkan
                  dalam TE dengan
                  peningkatan +296.57 dan +484.20%. Tambahan pula, ujian-t sampel
              berpasangan menunjukkan perbezaan yang signifikan (p<0.05) dalam
                bilangan dan biojisim cacing tanah. Keputusan untuk substrat
                  tidak bercampur menunjukkan CD (TA) menghasilkan bio produk yang mengandungi
                  kandungan K yang boleh bertukar tertinggi (1.98%). Manakala
                    kompos vermi GM (TD) mencatatkan nilai tertinggi untuk
                    keseluruhan N (1.66%) dan sedia ada P (0.64%). Kesimpulannya, 50% GM
                adalah digalakkan untuk dijadikan sebagai agen pukal dalam kultur vermi berserta penghasilan bio produk yang kaya dengan nutrien berbanding CD dan SMC.
                Selain itu, kandungan logam berat iaitu Cd, Cr, Pb, Cu dan Zn di dalam bio
                produk terhasil daripada semua perlakuan adalah lebih rendah berbanding had
                kompos yang ditetapkan oleh USA, negara-negara Eropah dan Cadangan Aras
                Pemerhatian Tapak untuk Tanah Tercemar Malaysia (SSLs).
  
 
             
           Kata kunci: Cacing tanah; elemen nutrien; sisa ternakan; substrat
            cendawan terpakai; teknologi vermi
            
           REFERENCES
            
           Azizi, A.B., Lim, M.P.M., Noor, Z.M. & Noorlidah, A.
            2013. Vermiremoval of heavy metal in sewage sludge by
              utilising Lumbricus rubellus. Ecotoxicology and Environmental
                Safety 90: 13-20.
  
           Azizi, A.B., Noor, Z.M., Noorlidah, A. & Rosna, M.T.
            2012. Bioconversion of biomass residue from the cultivation of pea sprouts on
            spent Pleurotus sajor-caju compost employing Lumbricus rubellus. Maejo
              International Journal of Science and Technology 6(3): 461-469.
  
           Azizi, A.B., Noor, Z.M., Jaime, A.T.d.S., Noorlidah Abdullah
  & Adi, A.J. 2011. Vermicomposting of sewage sludge by Lumbricus rubellus using spent mushroom compost as feed material: Effect on concentration of
            heavy metals. Biotechnology and Bioprocess Engineering 16(5): 1036-
            1043.
  
           Bansal, S. & Kapoor, K.K. 2000. Vermicomposting
            of crop residues and cattle dung with Eisenia foetida. Bioresource
              Technology 73: 95-98.
  
           Bernal, M.P., Alburquerque, J.A. &
            Moral, R. 2009. Composting of animal manures and
              chemical criteria for compost maturity assessment: A review. Bioresource
                Technology 100(22): 5444-5453.
  
 Bishop, P.L. & Godfrey, C. 1983. Nitrogen
            transformation during sewage composting. Biocycle 24: 34-39.
  
           Bremner, J.M. & Mulvaney, R.G. 1982. Nitrogen total. In Methods
            of Soil Analysis, edited by Page, A.L., Miller, R.H. & Keeney, D.R. Madison: American Society of Agronomy. pp. 575-624.
  
           Brinton, W.F. 2000. Compost
            Quality Standards and Guidelines. Report to New York State ssociation of
            Recyclers by Woods Ends Research Laboratory Inc. USA. p. 15.
  
           Crawford, J.H. 1983. Review of composting. Process
            Biochemistry 18: 14-15.
  
           Department of Environment, Malaysia (DOE) 2009. Contaminated
            Land Management and Control Guidelines No.1: Malaysian Recommended Sites
            Screening Levels for Contaminated Land. Retrieved from: http://www.doe.gov.my.
            
           Dominguez, J. & Edwards, C.A. 2004. Vermicomposting
            organic wastes: A review. In Soil Zoology for Sustainable Development in the
              21st Century, edited by Hanna, S.H.S. & Mikhail, W.Z.A.
            Cairo. pp. 369-395.
  
           Gunadi, B., Edwards, C.A. &
            Arancon, Q. 2002. Changes in trophic
              structure of soil arthropods after the application of vermicomposts. European
                Journal of Soil Biology 381: 61-165.
  
 Fernández-Gómez, M.J., Romero, E. &
            Nogales, R. 2010. Feasibility of
              vermicomposting of vegetable greenhouse waste recycling. Bioresource
                Technology 101: 9654-9660.
  
 John, M.K. 1970. Colorimetric
            determination of phosphorous in soil and plant materials with ascorbic acid. Soil Science 109: 214-220.
  
           Khwairakpam, M. & Bhargava, R.
            2009. Bioconversion of
              filter mud using vermicomposting employing two exotic and one local earthworm
              species. Bioresource Technology 100: 5846-5852.
  
 Kulcu, R., Sonmez, I., Yaldiz, O. &
            Kaplan, M. 2008. Composting of spent mushroom compost,
              carnation wastes, chicken and cattle manures. Bioresource Technology 99:
              8259-8264.
  
 Le Bayon, R.C. & Binet, F. 2006. Earthworm changes the distribution and availability of
            phosphorous in organic substrates. Soil Biology & Biochemistry 38:
            235-246.
  
           Lim, S.L., Wu, T.Y., Sim, E.Y.S., Lim, P.N. & Charles,
            C. 2012. Biotransformation of rice husk into organic
              fertilizer through vermicomposting. Ecological Engineering 41:
            60-64.
  
           Loh, T.C., Lee, Y.C., Liang, J.B. &
            Tan, D. 2005. Vermicomposting of cattle and goat
              manures by Eisenia foetida and their growth and reproduction
              performance. Bioresource Technology 96: 111-114.
  
 Ndegwa, P.M., Thompson, S.A. & Das, K.C. 1999. Effects
            of stocking density and feeding rate on vermicomposting of biosolids. Bioresource
              Technology 71: 5-12.
  
           Plaza, C., Nogales, R., Senesi, N.,
            Benitez, E. & Polo, A. 2007. Organic matter humification by vermicomposting of cattle manure alone
              and mixed with two-phase olive pomace. Bioresource Technology 9:
              5085-5089.
  
 Prakash, M. & Karmegam, N. 2010. Vermistabilization of press mud using Perionyx
            ceylanensis Mich. Bioresource Technology 101: 8464-8468.
  
           Shahack-Gross, R. 2010. Herbivorous livestock dung: Formation, taphonomy, methods
            for identification and archaeological significance. Journal of
              Archaeological Science 38(2): 205-218.
  
           Suthar, S. 2010. Recycling of agro-industrial sludge through
            vermitechnology. Ecological Engineering 36: 1028-1036.
  
           Suthar, S. 2008. Bioconversion of post-harvest crop residues
            and cattle shed manure into value-added products using earthworms Eudrilus
              eugeniae Kinberg. Ecological Enginering 32: 206-214.
  
           Tripathi, G. & Bhardwaj, P. 2004. Comparative
            studies on biomass production, life cycles and composting efficiency of Eisenia
              foetida (Savigny) and Lampito mauritii (Kinberg). Bioresource
                Technology 92: 275-278.
  
           Walkley, A. & Black, I.A. 1934.  Estimation of organic
            carbon by the chronic acid titration method. Soil Science 37:
            29-31.
  
           Yadav, A. & Garg,
            V.K. 2010. Recycling of organic waste by employing Eisenia foetida. Bioresource
              Technology 102(3): 2874-2880.
  
           
             
           
             
           *Corresponding
          author; email: azizi.br@um.edu.my               |