Sains Malaysiana 43(11)(2014):
1761–1768
Pengoksidaan Elektrokimia C. I. Reactive Orange 4 Menggunakan Elektrod
Komposit Dwilogam
(Electrochemical Oxidation of C. I. Reactive Orange 4 Using
Bimetallic Composite Electrodes)
NORAZZIZI NORDIN1 & MOHAMED ROZALI OTHMAN1,2*
1Makmal Elektrosintesis dan Elektrokimia Sekitaran, Pusat Pengajian Sains Kimia
dan Teknologi Makanan, Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia
43600 Bangi, Selangor, Malaysia
2Pusat Penyelidikan dan Analisis Air (ALIR), Fakulti Sains dan Teknologi
Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
Received:
17 April 2013/Accepted: 1 April 2014
ABSTRAK
Elektrod komposit dwilogam yang disediakan hasil campuran serbuk argentums (Ag) dan karbon (C) (dinamakan AgC-PVC) memberikan hasil elektrolisis larutan pewarnaC. I. Reactive Orange 4 (RO4)
yang tidak berwarna dan tanpa penghasilan enapan lumpur berbanding elektrod komposit dwilogam lain. Perbezaan nisbah komposisi serbuk Ag:C (30:70, 50:50 and 70:30) dalam penyediaan elektrod seterusnya diuji untuk melihat kesan perbezaan komposisi ini terhadap penyahwarnaan RO4. Melalui persamaan Tafel yang diperoleh, elektrod Ag28.5C66.5-PVC5 yang menggunakan komposisi 30%
Ag dan 70% C memberikan nilai perubahan ketumpatan arus, io yang lebih tinggi iaitu 3.555 mA/cm2 berbanding elektrod lain. Elektrod ini mempunyai aktiviti pemangkinan elektrokimia yang lebih baik berbanding elektrod lain. Hasil proses elektrolisis elektrod Ag28.5C66.5-PVC5 terhadap larutan RO4 telah dianalisis menggunakan spektrofotometer UV-Nampak dan didapati proses degredasi kumpulan azo dalam pewarna tersebut telah berlaku selepas proses elektrolisis yang menghasilkan larutan tidak berwarna.
Kata kunci: Elektrod komposit dwilogam; pengoksidaan elektrokimia; penyahwarnaan
ABSTRACT
Bimetallic composite electrode prepared from mixture of argentums
(Ag) and carbon (C) powder (known as AgC-PVC)
becomes the best electrode to decolorize C. I. Reactive Orange 4 (RO4)
solution without sludge formation in the end of electrolysis process. Three
ratios of Ag:C powder
(30:70, 50:50 and 70:30) have been used for preparation of electrode to
investigate the effect of electrode composition toward decolorization of RO4 solution. From Tafel equation obtained, the value of exchange current density, io for Ag28.5C66.5-PVC5 prepared
from 30% Ag and 70% C is 3.555 mA/cm2 becomes
the highest than other electrodes. This electrode gives the best electrocatalytic activity compared to others. The clear
solution produced after electrolysis of RO4 was analyzed by UV-VIS spectrophotometer to identify the level of decolorization.
The UV-Vis spectrum shows that degradation of azo group occurs in RO4 structure to produce clear
solution after electrolysis process.
Keywords: Bimetallic composite electrode; decolorization; electrochemical oxidation
REFERENCES
Awad, H.S. & Abo Galwa, N. 2005. Electrochemical degradation of acid blue and basic brown dyes on Pb/PbO2 electrode
in the presence of different conductive electrolyte and effect of various
operating factors. Chemosphere 61: 1327-1335.
Bagotsky, V.S. 2006. Fundamentals of
Electrochemistry. New Jersey: John Wiley and Sons Inc.
Basiri Parsa, J., Rezaei, M. & Soleymani, A.R.
2009. Electrochemical
oxidation of an azo dye in aquous media investigation of operational parameters and kinetics. J.
Hazard. Mater. 168: 997-1003.
Bockris, J.O.M. & Reddy, A.K.N. 1973. Modern
Electrochemistry. Vol. 2. New York: Plenum Press.
Bonet, F., Grugeon,
S., Dupont, L., Urbina, R.H., Guery,
C. & Tarascon, J.M. 2003. Synthesis and characterization of
bimetallic Ni–Cu particles. J. Solid State Chem. 172:
111-115.
Del Rio, A.I.D., Molina, J., Bonastre, J. & Cases, F. 2009. Influence of electrochemical reduction and oxidation
processes on the decolourisation and degradation of C.I.
Reactive Orange 4 solutions. Chemosphere 75: 1329-1337.
Fan, L., Zhoub,
Y., Yang, W., Chen, G. & Yang, F. 2006. Electrochemical degradation of Amaranth
aqueous solution on ACF. J. Hazard. Mater. B137: 1182-1188.
Fenyun Yi, Shuixia Chen & Chan’e Yuan. 2008. Effect of activated carbon fiber anode
structure and electrolysis conditions on electrochemical degradation of dye
wastewater. J. Hazard. Mater. 157: 79-87.
Fernandes, A., Morão,
A., Magrinho, M., Lopes, A. & Gonçalves,
I. 2004. Electrochemical
degradation of C. I. Acid Orange 7. Dyes and Pigments 61(3):
287-296.
Gupta, V.K., Jain, R. & Varshney,
S. 2007. Electrochemical removal of the hazardous dye Reactofix Red 3 BFN from industrial effluents. J.
Colloid. Interf. Sci. 312: 292-296.
Ihos, M., Bocea,
G. & Iovi, A. 2005. Use of dimensionally stables anodes for the electrochemical
treatment of textile wastewater. Chem. Bull. “POLITEHNICA” Univ. (Timişoara) 50(64): 83-86.
Kim, M.S., Rodriguez, N.M. & Baker,
R.T.K. 1991. The interaction of
hydrocarbon with copper-nickel and nickel in the formation of carbon filaments. J. Catal. 131: 60-73.
López-Grimau, V. & Gutiérrez, M.C. 2006. Decolorization of simulated
reactive dyebath effluents by electrochemical
oxidation assisted by UV light. Chemosphere 62(1): 106-112.
Körbahti, B.K. & Tanyolac, A. 2007.
Electrochemical treatment of simulated textile wastewater with industrial
components and Levafix Blue CA reactive dye: Optimization
through response surface methodology. J. Hazard. Mater. 151: 422- 431.
Maljaei, A., Arami,
M. & Mahmoodi, N.M. 2009. Decolorization and aromatic ring degradation of colored textile wastewater using
indirect electrochemical oxidation method. Desalination 249:
1074-1078.
Malpass, G.R.P., Miwa, D.W., Machado, S.A.S. & Motheo, A.J.
2008. Decolourisation of real textile waste using
electrochemical techniques: Effect of electrode composition. J. Hazard.
Mater. 156: 170-177.
Mohan, N., Balasubramanian,
N. & Basha, C.A. 2007. Electrochemical oxidation of textile
wastewater and its reuse. J. Hazard. Mater. 147: 644-651.
Panizza, M. & Cerisola,
G. 2008. Removal of color and
COD from wastewater containing acid blue 22 by electrochemical oxidation. J. Hazard. Mater. 153: 83-88.
Raghu, S. & Ahmed Basha, C.
2007. Electrochemical treatment of Procion Black 5B
using cylindrical flow reactor-A pilot plant study. J. Hazard. Mater. 139:
381-390.
Rajkumar, D., Song, B.J. & Kim, J.G. 2007. Electrochemical degradation of Reactive Blue 19 in chloride
medium for the treatment of textile dying wastewater with identification of
intermediate compounds. Dyes Pigments 72: 1-7.
Riera-Torres, M. & Gutiérrez, M.C. 2010. Colour removal of three reactive
dyes by UV light exposure after electrochemical treatment. Chem. Eng. J. 156:
114-120.
Riyanto & Othman, M.R. 2008. Characterization
of Ni-Co-PVC and Ni-Cu-PVC alloys prepared by mechanical alloying technique
(MAT). The Open Mater. Sci. J. 2:
40-46.
Riyanto, Jumat Salimon & Mohamed Rozali Othman. 2007. Perbandingan hasil pengoksidaan elektrokimia etanol dalam larutan alkali yang menggunakan elektrod platinum-polivinilklorida (Pt-PVC) dan kepingan logam Pt. Sains Malaysiana36(2):
175-181.
Robinson, T., McMullan, G., Marchant,
R. & Nigam, P. 2001. Remediation of dyes in textile effluent: A critical
review on current treatment technologies with purposed alternatives. Bioresource Technol. 77(3): 247-255.
Saez, C., Panizza, M., Rodrigo, M.A.
& Cerisola, G. 2007. Electrochemical incineration of dyes using a boron-doped diamond
anode. J. Chem. Technol. Biotechnol. 82(6):
575- 581.
Tapan, N.A., Mustain, W.E. &
Prakash, J. 2005. Determination of
anode electrokinetic mechanism in a direct methanol
fuel cell by asymmetric electrode technique. Proceedings
International Hydrogen Energy Congress and Exhibition (IHEC), Istanbul Turkey.
*Corresponding
author; email: rozali@ukm.edu.my
|