Sains Malaysiana 43(11)(2014): 1781–1790
Multivariate
Relationship Modeling using Nested Fuzzy Cognitive Map
(Model Hubungan Multivariasi Menggunakan Peta Kognitif Kabur Tersarang)
O. MOTLAGH1*, E.I. PAPAGEORGIOU2, S.H. TANG3 & ZAMBERI JAMALUDIN1
1Robotics and Atomation, Universiti Teknikal Malaysia Melaka, 76100 Durian Tunggal, Melaka
Malaysia
2Informatics and
Computer Tech., Technological Education Institute (TEI), Lamia, 654 04 Kavala
Greece
3Mechanical and
Manufacturing Department, Universiti Putra Malaysia, 43400 Serdang, Selangor
Malaysia
Received: 7 June 2013/Accepted: 11 March 2014
ABSTRACT
Soft computing is an alternative to hard and classic math models
especially when it comes to uncertain and incomplete data. This includes
regression and relationship modeling of highly interrelated variables with
applications in curve fitting, interpolation, classification, supervised
learning, generalization, unsupervised learning and forecast. Fuzzy cognitive
map (FCM)
is a recurrent neural structure that encompasses all possible connections
including relationships among inputs, inputs to outputs and feedbacks. This
article examines a new methods for nonlinear
multivariate regression using fuzzy cognitive map. The main contribution is the
application of nested FCM structure to define edge weights in form
of meaningful functions rather than crisp values. There are example cases in
this article which serve as a platform to modelling even more complex
engineering systems. The obtained results, analysis and comparison with similar
techniques are included to show the robustness and accuracy of the developed
method in multivariate regression, along with future lines of research.
Keywords: Nested fuzzy cognitive map; neural activation;
regression
ABSTRAK
Pengiraan lembut adalah alternatif kepada model matematik klasik dan sukar terutama apabila ia melibatkan data yang tidak menentu dan tidak lengkap. Ini termasuk regresi dan pemodelan hubungan pemboleh ubah yang sangat berkait dengan aplikasi dalam penyesuaian lengkung, interpolasi, pengelasan, pembelajaran yang diselia, generalisasi, pembelajaran tanpa penyeliaan dan ramalan. Peta kognitif kabur (FCM) merupakan struktur neural berulang yang merangkumi semua kemungkinan sambungan termasuk hubungan antara input, input kepada output dan maklum balas. Artikel ini mengkaji kaedah baru untuk regresi multivariasi tak linear menggunakan peta kognitif kabur. Penyumbang utama adalah penggunaan struktur FCM bersarang untuk menentukan kelebihan pemberat dalam bentuk fungsi bermakna dan bukannya nilai-nilai bersih. Terdapat kes-kes contoh dalam artikel ini yang berfungsi sebagai satu platform untuk pemodelan sistem kejuruteraan yang lebih kompleks. Keputusan yang diperoleh, analisis dan perbandingan dengan teknik yang sama disertakan untuk menunjukkan keberkesanan dan ketepatan kaedah yang dibangunkan dalam regresi multivariasi bersama-sama dengan hala tuju untuk penyelidikan yang akan datang.
Kata kunci: pengaktifan neural; peta kognitif kabur tersarang; regresi
REFERENCES
Abraham, A. & Nath,
B. 2001. A neuro-fuzzy approach for modelling electricity
demand in Victoria. Applied Soft Computing 1(2): 127-138.
Bartkiewicz, W. 2000. Neuro-fuzzy approaches to short-term electrical
load forecasting. Proceedings of the IEEE-INNS-ENNS
International Joint Conference on Neural Networks. 6:
229-234.
Bianco, V., Manca, O. & Nardini, S. 2009. Electricity consumption
forecasting in Italy using linear regression models. Energy 34(9):
1413-1421.
Chang, P-C., Fan, C-Y.
& Lin, J-J. 2011. Monthly electricity demand forecasting based on a
weighted evolving fuzzy neural network approach. International Journal of
Electrical Power and Energy Systems 33(1): 17-27.
Connor, J.T. 1996. A robust neural network filter for electricity
demand prediction. Journal of Forecasting 15(6): 437-458.
Cottet, R. & Smith, M. 2003. Bayesian modeling and forecasting of intraday
electricity load. Journal of the American Statistical Association 98(464):
839-849.
Darbellay, G.A. & Slama, M. 2000. Forecasting the short-term demand for electricity: Do neural
networks stand a better chance. International Journal of Forecasting 16(1):
71-83.
Dickerson, J.A. & Kosko,
B. 1994. Virtual worlds as fuzzy cognitive maps. Presence 3(2): 173-189.
Erdogdu, E. 2007. Electricity demand analysis using cointegration and ARIMA modelling: A case study of Turkey. Energy
Policy 35(2): 1129-1146.
Espey, J.A. & Espey, M. 2004. Turning on the lights: A meta- analysis of residential
electricity demand elasticities. Journal of Agricultural
and Applied Economics 36(1): 65-81.
Gulsen, M., Smith, A.E. & Tate, D.M. 1995. A genetic algorithm approach to curve fitting. International
Journal of Production Research 33(7): 1911-1923.
Historical demand data. 2013. Historical demand data from 2004 to date.
http://www.nemweb.com.au/REPORTS/Archive/ HistDemand/.
Accessed on 10 November 2013.
Karr, C.L., Weck, B., Massart, D.L. & Vankeerberghen,
P. 1995. Least median squares curve fitting using a genetic algorithm. Engineering
Applications of Artificial Intelligence 8(2): 177-189.
Khan, M.R. & Ondrůšek,
Č. 2001. The Hopfield model
for short-term load prediction, 2nd Spring International Power Engineering
Conference. UVEE, FEI, Brno University of Technology, Czech
Republic. pp. 81-85.
Kosko, B. 1996. Fuzzy Engineering. Upper Saddle River, NJ:
Prentice-Hall Inc.
Motlagh, O., Jamaludin, Z., Tang, S.H.
& Khaksar, W. 2013. An agile FCM for real-time
modeling of dynamic and real-life systems, evolving systems: Special issue on
temporal aspects in fuzzy cognitive maps. DOI: 10.1007/s12530-013-9077-6.
Motlagh, O., Tang, S.H., Maslan, M.N., Jafar, F.A. & Maslita, A.A.
2013a. A novel graph computation technique for multi-dimensional curve fitting. Connection Science 25(2- 3): 129-138.
Motlagh, O., Tang, S.H., Ismail, N. & Ramli,
A.R. 2012. An expert fuzzy cognitive map for reactive
navigation of mobile robots. Fuzzy Sets and Systems 201: 105-121.
Motlagh, O., Tang, S.H., Khaksar, W.
& Ismail, N. 2012a. An alternative approach to FCM
activation for modeling dynamic systems. Applied Artificial
Intelligence 26(8): 733-742.
Negnevitsky, M. 2005. Artificial Intelligence: A Guide to
Intelligent Systems. England: Pearson Education Ltd.
Pai, P-F. & Hong, W-C. 2005. Forecasting regional
electricity load based on recurrent support vector machines with genetic
algorithms. Electric Power Systems Research 74(3): 417-425.
Papageorgiou, E.I. & Salmeron, J.L. 2012.
Learning fuzzy grey cognitive maps using non-linear Hebbian. International Journal of Approximate Reasoning 53(1): 54-65.
Pappas, S.Sp., Ekonomou, L., Karampelas,
P., Karamousantas, D.C., Katsikas,
S.K., Chatzarakis, G.E. & Skafidas,
P.D. 2010. Electricity demand load forecasting of
the Hellenic power system using an ARMA model. Electric Power Systems
Research 80(3): 256-264.
Papageorgiou, E.I., Stylios, C.D. & Groumpos, P.P. 2004. Active Hebbian learning algorithm to train fuzzy cognitive maps. Int. Journal of Approximate Reasoning 37(3): 219-247.
Papageorgiou, E.I., Stylios, C.D. & Groumpos, P.P. 2003. Fuzzy cognitive map
learning based on nonlinear Hebbian rule. Australian
Conf. on Artificial Intelligence. pp. 256-268.
Santin, O.G. 2011. Behavioural patterns
and user profiles related to energy consumption for heating. Energy and
Buildings 43(10): 2662-2672.
Stach, W., Kurgan, L., Pedrycz,
W. & Reformat, M. 2005. Genetic learning of fuzzy cognitive maps. Fuzzy Sets and
Systems 153: 371-401.
Taylor, J.W., de Menezes,
L.M. & McSharry, P.E. 2006. A comparison of univariate methods for forecasting electricity demand up to a day ahead. International
Journal of Forecasting 22(1): 1-16.
Thatcher, M.J. 2007. Modelling changes to electricity demand load duration
curves as a consequence of predicted climate change for Australia. Energy 32:
1647-1659.
Vazquez, A. 2002. A balanced differential learning
algorithm in fuzzy cognitive maps, Technical Report, Departament de Lenguatges I Sistemes Informatics, Universitat Politecnica de Catalunya (UPC).
Yao, A.W.L., Chi, S.C. & Chen, J.H.
2003. An improved Grey-based approach for
electricity demand forecasting. Electric Power Systems Research 67(3):
217-224.
*Corresponding
author; email: omid@utem.edu.my
|