Sains Malaysiana 43(12)(2014):
1843–1853
Drivers
of Soil Carbon Dioxide Efflux in a 70 years Mixed Trees Species of Tropical
Lowland Forest, Peninsular Malaysia
(Pemacu kepada Karbon Dioksida Efluks Tanah dalam Masa 70 Tahun
Kepelbagaian
Spesies Pokok di Hutan Tropika Tanah Rendah, Semenanjung Malaysia)
K.H. MANDE1, A.M. ABDULLAH2*, A.A. ZAHARIN3,
& A.N. AINUDDIN4
1Air Pollution &
Ecophysiology Laboratory, Faculty of Environmental Studies, Universiti Putra
Malaysia, 43400 Serdang, Selangor Darul Ehsan, Malaysia
2Department of
Environmental Sciences, Faculty of Environmental Studies, Universiti Putra
Malaysia, 43400 Serdang, Selangor Darul Ehsan, Malaysia
3Environmental
Forensics Research Centre, Faculty of Environmental Studies, Universiti Putra
Malaysia, 43400 Serdang, Selangor Darul Ehsan, Malaysia
4Institute
of Tropical Forest and Forest Product, Universiti Putra Malaysia, 43400
Serdang, Selangor Darul Ehsan, Malaysia
Received: 27 November 2013/Accepted: 22 April 2014
ABSTRACT
Forest biomass is a major component in carbon sequestration and a
driver of heterotrophy and autotrophy soil CO2 efflux, as it
accumulation increases carbon organic nutrients, root growth and microbial
activity. Understanding forest biomass rational to ascertain the forest
ecosystems productivity is important. A study has been conducted in a
70-years-old forest of mixed tree species, Sungai Menyala Forest, Port Dickson,
Peninsular Malaysia, measuring the total above ground biomass (TAGB), below ground
biomass (BGB),
total forest carbon (SOCs), soil organic carbon stock (SOCstoc)
and soil CO2 efflux from 1 February to 30 June 2013. The
aim was to determine the effect of forest biomass, litter fall and influence of
environmental factors on soil CO2 efflux. Multiple regression analysis has been
conducted on the relationship between the variables and the soil CO2 efflux.
Soil CO2 efflux
was found to range from 92.09-619.67 mg m-2 h-1, with the amount
of the tropical forest biomass estimated at 1.9×106, 7.7×106 and
9.2×105 kg for TAGB, BGB and SOCs, respectively. The analysis showed a
strong correlation between soil CO2 efflux and soil temperature, soil moisture,
water potential and forest carbon input with R2 more than 0.89 at p<0.01.
The findings showed a strong contribution from forest biomass as drivers of
heterotrophy and autotrophy soil CO2 efflux. We can conclude that the
forest biomass and environmental factors are responsible for the remarkable
variation in soil CO2 efflux, as climate change can cause increase
in temperature as well as deforestation decreases forest biomass.
Keywords: Autotrophy; carbon input; forest biomass; heterotrophy;
microbial activities; soil CO2 efflux
ABSTRAK
Biojisim hutan adalah komponen utama dalam
perampasan karbon dan pemacu kepada CO2 efluks tanah secara
heterotrofi dan autotrofi dengan meningkatnya penghimpunan nutrien karbon organik,
pertumbuhan akar dan aktiviti microbiologi. Pemahaman biojisim hutan yang
rasional kepada penentuan produktiviti ekosistem hutan adalah penting. Satu kajian telah dijalankan di dalam hutan yang berusia 70 tahun dengan
kepelbagaian spesies pokok, di Hutan Sungai Menyala, Port Dickson, Semenanjung
Malaysia, dengan pengukuran jumlah biojisim di atas tanah (TAGB), biojisim di bawah
tanah (BGB),
jumlah karbon hutan (SOCs), stok karbon organik tanah (SOCstoc)
dan juga CO2 efluks tanah dari 1 Februari hingga 30
Jun 2013. Kajian ini bertujuan untuk menentukan kesan
biojisim hutan, gugurnya kekotoran serta pengaruh faktor alam sekitar terhadap
CO2 efluks
tanah. Analisis pengunduran gandaan telah dijalankan
dalam penentuan hubungan antara pemboleh ubah dengan CO2 efluks tanah. CO2 efluks
tanah didapati berada dalam julat 92.09-619.67 mg m-2 h-1, dengan jumlah
biojisim hutan tropika dianggarkan pada 1.9×106 kg, 7.7×106 kg,
9.2×105 kg masing-masing bagi TAGB, BGB dan SOCs. Analisis
menunjukkan perhubungan yang kuat antara CO2 efluks terhadap suhu
tanah, kelembapan tanah, keupayaan air dan input karbon hutan dengan nilai R2 melebihi 0.89 pada nilai p<0.01. Penemuan ini menunjukkan sumbangan yang kuat daripada
biojisim hutan sebagai pemacu heterotrofi dan autotrofi CO2 efluks tanah. Disimpulkan bahawa biojisim hutan dan faktor-faktor alam sekitar
bertanggungjawab terhadap kepelbagaian yang menakjubkan dalam CO2 efluks tanah, dengan
perubahan iklim boleh menyebabkan pertambahan suhu begitu juga menurunnya
biojisim hutan melalui penyahhutanan.
Kata kunci: Aktiviti mikrobial; autotrofi;
biojisim hutan; CO2 efluks
tanah; input karbon; heterotrofi
REFERENCES
Adachi, M., Bekku, Y.S., Rashidah, W.,
Okuda, T. & Koizumi, H. 2006. Differences in soil respiration between different tropical
ecosystems. Applied Soil Ecology 34(2-3): 258-265.
Akburak, S. & Makineci, E. 2013. Temporal changes of soil respiration under different tree
species. Environmental Monitoring and Assessment 185(4): 3349-3358.
Asensio, D., Yuste, J.C., Mattana, S., Ribas, À., Llusià, J.
& Peñuelas, J. 2012. Litter VOCs induce changes in soil microbial biomass C
and N and largely increase soil CO2 efflux. Plant and Soil 360(1-2): 163-174.
Coleman, D.C., Hunter, M.D., Hutton,
J., Pomeroy, S. & Swift, L. 2002. Soil
respiration from four aggrading forested watersheds measured over a quarter
century. Forest Ecology and Management 157: 247-253.
Davidson, E.A., Savage, K., Bolstad, P., Clark, D.A.,
Curtis, P.S., Ellsworth, D.S., Hanson, P.J., Law, B.E., Luo, Y., Pregitzer,
K.S., Randolph, J.C. & Zak, D. 2002. Belowground carbon allocation in
forests estimated from litterfall and IRGA-based soil respiration measurements. Agricultural and Forest Meteorology 113: 39-51.
Dixon, R., Brown, S., Houghton, R.,
Solomon, A., Trexler, M. & Wisniewski, J. 1994. Carbon pools and flux of global forest
ecosystems. Science (Washington) 263(5144): 185-189.
Eleanor, M. 2008. Soil organic carbon. In Encyclopedia of Earth, edited by Cleveland, C.J. Environmental
Information Coalition, National Council for Science and the Environment,
Washington, D.C. Accessed on 13 June 2009.
Hibbard, K.A., Law, B.E., Reichstein, M. & Sulzman, J.
2005. An analysis of soil respiration across northern
hemisphere temperate ecosystems. Biogeochemistry 73: 29-70.
Houghton, R. & Hackler, J. 1999. Emissions of carbon
from forestry and land use change in tropical Asia. Glob. Chang. Biol. 5(4):
481-492.
Jandl, R., Lindner, M., Vesterdal, L.,
Bauwens, B., Baritz, R., Hagedorn, F., Johnson, D.W., Minkkinen, K. &
Byrne, K.A. 2007. How strongly can forest management
influence soil carbon sequestration? Geoderma 137: 253-268.
Jin, H.M., Sun, O.J., Luo, Z.K. &
Liu, J. 2009. Dynamics of soil
respiration in sparse Ulmus pumila woodland under semi-arid climate. Ecological
Research 24(4): 731-739.
Kato, J., Tadaki, Y. & Ogawa, H. 1978. Biomass and
growth increment studies in Pasoh Forest, Malaysia. Nat. J. 30: 211-224.
Lee, M., Nakane, K., Nakatsubo, T.
& Koizumi, H. 2003. Seasonal changes in
the contribution of root respiration to total soil respiration in a
cool-temperate deciduous forest. Plant and Soil 255(1): 311-318.
Manokaran, N., LaFrankie, J.V.,
Kochummen, K.M., Quah, E.S., Klahn, J.E., Ashton, P.S. & Hubbell, S.P.
1990. Methodology for the
fifty-hectare research plot at Pasoh Forest reserve. Res. Pam. For.
Res. Inst. Malaysia 104: 1-69.
McCarthy, D.R. & Brown, K.J. 2006. Soil respiration
responses to topography, canopy cover, and prescribed burning in an oakhickory
forest in southeastern Ohio. For. Ecol. Manage. 237: 94-102.
Ogawa, J.M., Sandeno, J.L. & Mathre, J.H. 1963.
Comparisons in development and chemical control of decay organism on mechanical
and hand harvested stone fruits. Plant Das. Rep. 47: 129-133.
Raich, J.W., Potter, C.S. & Bhagawati, D. 2002. Interannual variability in global soil respiration, 1980-1994. Global Change Biology 8: 800-812.
Raich, J.W. & Tufekcioglu, A. 2000. Vegetation and soil
respiration: Correlations and controls. Biogeochemistry 48: 71-90.
Raich, J.W. & Schlesinger, W.H. 1992. The
global carbon dioxide flux in soil respiration and its relationship to
vegetation and climate. Tellus 44B: 81-99.
Ravindranath, N.H., Somasekhar, B.S.
& Gadgil, M. 1997. Carbon flows in
Indian forest. Climate Change 35: 297-320.
Saiz, G., Green, C., Butterbach-Bahl,
K., Kiese, R., Avitabile, V. & Farrell, E.P. 2006. Seasonal and spatial variability of soil respiration in
four Sitka spruce stands. Plant and Soil 287(1-2): 161-176.
Sartori, F., Lal, R., Ebinger, M.H.
& Eaton, J.A. 2007. Changes in soil
carbon and nutrient pools along a chronosequence of poplar plantations in the
Columbia Plateau, Oregon, USA. Agric. Ecosyst. Environ. 122: 325-339.
Shi, Z., Li, Y.Q., Wang, S.J., Wang, G.B., Ruan, H.H., He,
R., Tang, Y.F. & Zhang, Z.X. 2009. Accelerated soil CO2 efflux after conversion from
secondary oak forest to pine plantation in southeastern China. Ecol.
Res. 24: 1257-1265.
Sollins, P., Glassman, C., Paul, E.A.,
Swanston, C., Lajtha, K., Heil, J.W., Elliott, E.T. & Robertson, P.G. 1999. Soil Carbon and Nitrogen: Pools and Fractions. Standard soil methods for long-term ecological research. Oxford: Oxford University Press pp. 89-105.
Tanaka, K. & Hashimoto, S. 2006. Plant canopy effects on
soil thermal and hydrological properties and soil respiration. Ecol. Model 196:
32-44.
Tang, X., Zhou, G., Liu, S., Zhang, D.,
Liu, S. & Li, J. 2006. Dependence of soil respiration on soil temperature and soil
moisture in successional forests in Southern China. Journal of
Integrative Plant Biology 48(6): 654-663.
Teklay, T. & Chang, S.X. 2008. Temporal changes in soil
carbon and nitrogen storage in a hybrid poplar chronosequence in northern
Alberta. Geoderma 144: 613-619.
Wu, Y.Q., Liu, G.H., Fu, B.J., Liu, Z.F. & Hu, H.F.
2006. Comparing soil CO2 emission
in pine plantation and oak shrub: Dynamics and correlations. Ecol. Res.
21: 840-848.
*Corresponding
author; email: amakmom@upm.edu.my
|