Sains Malaysiana 43(12)(2014):
1865–1871
Development of Generalized Feed Forward Network for
Predicting Annual Flood (Depth)
of a Tropical River
(Pembangunan Rangkaian Suapan ke Hadapan Menyeluruh untuk
Meramalkan Banjir Tahunan (Kedalaman) Sungai Tropika)
MOHSEN SALARPOUR1, ZULKIFLI YUSOP2*, MILAD JAJARMIZADEH1 & FADHILAH YUSOF3
1Faculty of Civil
Engineering, Department of Hydraulic and Hydrology
Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
2Water Research
Alliance, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
3Faculty of Science,
Department of Mathematics, Universiti Teknologi Malaysia
81310 Skudai, Johor, Malaysia
Received: 17 August 2013/Accepted: 16 April 2014
ABSTRACT
The modeling of rainfall-runoff relationship in a watershed is
very important in designing hydraulic structures, controlling flood and
managing storm water. Artificial Neural Networks (ANNs) are known as having
the ability to model nonlinear mechanisms. This study aimed at developing a
Generalized Feed Forward (GFF) network model for predicting annual flood
(depth) of Johor River in Peninsular Malaysia. In order to avoid over training,
cross-validation technique was performed for optimizing the model. In addition,
predictive uncertainty index was used to protect of over parameterization. The
governing training algorithm was back propagation with momentum term and
tangent hyperbolic types was used as transfer function for hidden and output
layers. The results showed that the optimum architecture was derived by linear
tangent hyperbolic transfer function for both hidden and output layers. The
values of Nash and Sutcliffe (NS) and root mean square error (RMSE)
obtained 0.98 and 5.92 for the test period. Cross validation evaluation showed
9 process elements is adequate in hidden layer for optimum generalization by
considering the predictive uncertainty index obtained (0.14) for test period
which is acceptable.
Keywords: Annual flood; artificial neural networks; cross
validation; generalized feed forward; Johor River; predictive uncertainty
ABSTRAK
Pemodelan hubungan curahan hujan-aliran air di suatu kawasan
tadahan adalah sangat penting dalam mereka bentuk struktur hidraulik, mengawal
banjir dan menguruskan air ribut. Rangkaian neural tiruan (ANNs)
dikenal pasti mempunyai keupayaan untuk memperaga mekanisme tak linear. Kajian ini bertujuan untuk membangunkan model rangkaian suapan ke
hadapan menyeluruh (GFF) untuk meramalkan banjir tahunan (kedalaman)
Sungai Johor di Semenanjung Malaysia. Untuk mengelakkan latihan
berlebihan, teknik pengesahan silang telah dijalankan bagi mengoptimumkan model
tersebut. Di samping itu, indeks ketidakpastian ramalan
digunakan untuk melindungi daripada pemparameteran berlebihan. Algoritma latihan pentadbiran adalah perambatan balik terma
momentum dan jenis tangen hiperbolik digunakan sebagai fungsi perpindahan bagi
lapisan tersembunyi dan output. Hasil kajian
menunjukkan bahawa seni bina yang optimum diperoleh melalui fungsi perpindahan
linear tangen hiperbolik bagi lapisan tersembunyi dan output. Nilai Nash dan Sutcliffe (NS) serta punca min ralat kuasa dua (RMSE)
memperoleh 0.98 dan 5.92 bagi masa ujian. Penilaian pengesahan silang
menunjukkan 9 proses elemen adalah mencukupi dalam lapisan tersembunyi untuk
pengitlakan yang optimum dengan mengambil kira ramalan indeks ketidaktentuan
yang diperoleh (0.14) dalam masa ujian adalah diterima.
Kata kunci: Banjir tahunan;
ketidakpastian ramalan; pengesahan silang; rangkaian neural tiruan; suapan ke
hadapan menyeluruh; Sungai Johor
REFERENCES
Altunkaynak, A. 2007. Forecasting surface water level fluctuations of Lake Van by
artificial neural networks. Water Resources Management 21(2): 399-408.
ASCE. 2000a. Artificial neural
networks in hydrology. I: preliminary concepts. Journal of Hydrologic
Engineering 5(2): 115-123.
ASCE. 2000b. Artificial neural
networks in hydrology. I: hydrologic applications. Journal of Hydrologic
Engineering 5(2): 124-137.
Agarwal, A., Mishra, S.K., Ram, S.
& Singh, J.K. 2006. Simulation of runoff
and sediment yield using artificial neural networks. Biosystems Engineering 94(4):
597-613.
Bishop, C.M. 1995. Neural Networks for
Pattern Recognition. Oxford: Clarendon Press.
Bowden, G.J., Dandy, G.C. & Maier,
H.R. 2005. Input determination for neural network
models in water resources applications. Part 1-background and methodology. Journal
of Hydrology 301(1): 75-92.
Can, I. 2002. A new improved Na/K geothermometer by
artificial neural networks. Geothermics 31(6): 751-760.
Dawson, C.W. & Wilby, R. 1998. An
artificial neural network approach to rainfall-runoff modelling. Hydrological
Sciences Journal 43(1): 47-66.
De Vos, N.J. & Rientjes, T.H.M. 2005. Constraints of
artificial neural networks for rainfall-runoff modelling: Trade-offs in
hydrological state representation and model evaluation. Hydrology and Earth
System Sciences Discussions 2(1): 365-415.
Elshorbagy, A., Simonovic, S.P. & Panu, U.S. 2000. Performance evaluation of artificial neural networks for runoff
prediction. Journal of Hydrologic Engineering 5(4): 424-427.
El-Shafie, A. & Noureldin, A. 2010. Generalized versus non-generalized neural network model for
multi-lead inflow forecasting at Aswan High Dam. Hydrology and Earth System
Sciences Discussions 7(5): 7957-7993.
El-Shafie, A., Noureldin, A., Taha,
M.R. & Hussain, A. 2011. Dynamic versus static neural network model for rainfall forecasting
at Klang River Basin, Malaysia. Hydrology and Earth System Sciences
Discussions 8(4): 6489-6532.
Ghumman, A.R., Ghazaw, Y.M., Sohail, A.R. & Watanabe, K.
2011. Runoff forecasting by artificial neural network and
conventional model. Alexandria Engineering Journal 50(4):
345-350.
Jajarmizadeh, M., Harun, S., Abdullah,
R. & Salarpour, M. 2012a. Using
soil and water assessment tool for flow simulation and assessment of sensitive
parameters applying SUFI-2 algorithm. Caspian Journal of Applied Sciences
Research 2(1): 37-47.
Jajarmizadeh, M., Harun, S. &
Salarpour, M. 2012b. A
review on theoretical consideration and types of models in hydrology. Journal
of Environmental Science and Technology 5(5): 249-261.
Jain, A.K., Mao, J. & Mohiuddin,
K.M. 1996. Artificial neural network: A tutorial. IEEE - Computer 29(3): 31-44.
Jamaludin Suhaila, Sayang Mohd Deni, Wan Zawiah Wan Zin
& Abdul Aziz Jemain 2010. Trends in Peninsular Malaysia rainfall data
during the Southwest Monsoon and Northeast Monsoon seasons: 1975-2004. Sains
Malaysiana 39(4): 533-542.
Wu, J.S., Han, J., Annambhotla, S. & Bryant, S. 2005. Artificial neural networks for forecasting watershed runoff and
stream flows. Journal of Hydrologic Engineering 10(3): 216-222.
Parasuraman, K., Elshorbagy, A. & Carey, S.K. 2006.
Spiking modular neural networks: A neural network modeling approach for
hydrological processes. Water Resources Research 42(5). DOI:
10.1029/2005WR004317.
Kişi, Ö. 2009. Neural networks and wavelet conjunction model for
intermittent streamflow forecasting. Journal of Hydrologic Engineering 14(8):
773-782.
Kişi, Ö. 2008. River flow forecasting and estimation
using different artificial neural network techniques. Hydrological
Resources 39(1): 27-40.
Kişi, Ö. 2007. Stream flow forecasting using different
artificial neural network algorithms. Journal of Hydrologic
Engineering 12(5): 532-539.
Kişi, Ö. 2006. Evapotranspiration estimation using feed-forward neural
networks. Nordic Hydrology 37(3): 247-260.
Kişi, Ö., Moghaddam Nia, A.R.,
Ghafari Gosheh, M., Jamalizadeh Tajabadi, M.R. & Ahmadi, A. 2012. Intermittent stream flow forecasting by
using several data driven techniques. Water Resources Management 26(2):
457-474.
Maier, H.R. & Dandy, G.C. 2000. Neural networks for the
prediction and forecasting of water resources variables: A review of modeling
issues and applications. Environ. Modeling and Software 15(1): 101-124.
Menhaj, M.B. 2010. Computational
Intelligence, Fundamentals of Neural Networks. Iran: Amir Kabir
University Publication.
Mutlu, E., Chaubey, I., Hexmoor, H.
& Bajwa, S.G. 2008. Comparison of
artificial neural network models for hydrologic predictions at multiple gauging
stations in an agricultural watershed. Hydrological Process 22(26):
5097-5106.
Nayebi, M., Khalili, D., Amin, S. &
Zand-Parsa, S.H. 2006. Daily
stream flow prediction capability of artificial neural networks as influenced by minimum air temperature data. Bio System Engineering 95(4):
557-567.
Nourani, V. & Kalantari, O. 2010. Integrated
artificial neural network for spatiotemporal modeling of
rainfall-runoff-sediment processes. Environmental Engineering Science 27(5): 411-422.
Rajurkar, M.P., Kothyari, U.C. & Chaube, U.C. 2004.
Modeling of daily rainfall-runoff relationship with artificial neural network. Journal
of Hydrology 285(1): 96-113.
Rezaeian Zadeh, M., Amin, S., Khalili,
D. & Singh, P.V. 2010. Daily
outflow prediction by multi-layer perceptron with logistic sigmoid and tangent
sigmoid activation functions. Water Resources Management 24(11):
2673-2688.
Shamsudin, R., Saad, P. & Shabri,
A. 2011. River flow time series using least
squares support vector machines. Hydrology and Earth System Science 15(6):
1835-1852.
Senthil Kumar, A.R., Sudheer, K.P.,
Jain, S.K. & Agarwal, P.K. 2005. Rainfall-runoff modeling using artificial neural networks: Comparison of
network types. Hydrological Process 19(6): 1277-1291.
Singh, A., Imtiyaz, M., Isaac, R.K.
& Denis, D.M. 2012. Comparison of soil
and water assessment tool (SWAT) and multilayer perceptron (MLP) artificial
neural network for predicting sediment yield in the Nagwa agricultural
watershed in Jharkhand, India. Agricultural Water Management 104:
113-120.
Sorayya, M., Aishah, S. & Mohd, B.
2012. Supervised and
unsupervised artificial neural networks for analysis of diatom abundance in
Tropical Putrajaya Lake, Malaysia. Sains Malaysiana 41(8):
939-947.
Srivastava, P., McNair, J.N. &
Johnson, T.E. 2006. Comparison of
process-based and artificial neural network approaches for stream flow modeling
in an agricultural watershed. Journal of the American Water Resources
Association 42(3): 545-563.
Tokar, A.S. & Johnson, P.A. 1999. Rainfall-runoff
modeling using artificial neural networks. Journal of Hydrologic
Engineering 4(3): 232-239.
Tombul, M. & Ersin, O. 2006. Modeling of rainfall-runoff relationship at the semi-arid
small catchments using artificial neural networks. Lecture Notes in Control
and Information Sciences 344: 309-318.
World Meteorological Organization. 1975. Inter-comparison of conceptual models used in
operational hydrological forecasting. World meteorological
Organization. Techinical report 429, Geneva, Switzerland.
Wahidah Sanusi. & Kamarulzaman
Ibrahim. 2012. Application of loglinear models in stimating wet category
in monthly rainfall. Sains Malaysiana 41(11): 1345-1353.
Xu, Q., Ren, L., Yu, Z., Yang, B. & Wang, G. 2008. Rainfall-runoff modeling at daily scale with artificial neural
networks, Fourth International Conference on Natural Computation Oct
18-20. Jinan.
*Corresponding
author; email: zulyusop@utm.my
|