Sains
Malaysiana 43(1)(2014): 151-159
Combined Similarity-numerical
Solutions of MHD Boundary Layer Slip Flow of
Non-Newtonian Power-law Nanofluids
over a Radiating Moving Plate
(Gabungan Penyelesaian Keserupaan Persamaan-berangka Aliran Slip
bagi Lapisan Sempadan MHD dengan
Nano Bendalir Hukum Kuasa yang Bukan-Newtonian atas Permukaan Beradiasi yang
Bergerak)
NUR HUSNA MD. YUSOFF, MD. JASHIM UDDIN* & AHMAD IZANI MD. ISMAIL
School of Mathematical
Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia
Received:
24 August 2012/Accepted: 26 March 2013
ABSTRACT
A combined
similarity-numerical solution of the magnetohydrodynamic boundary layer slip
flow of an electrically conducting non-Newtonian power-law nanofluid along a
heated radiating moving vertical plate is explored. Our nanofluid model
incorporates the influences of the thermophoresis and the Brownian motion. The
basic transport equations are made dimensionless first and then suitable
similarity transformations are applied to reduce them into a set of nonlinear
ordinary differential equations with the associated boundary conditions. The
reduced equations are then solved numerically. Graphical results for the
non-dimensional flow velocity, the temperature and the nanoparticles volume
fraction profiles as well as for the friction factor, the local Nusselt and the
Sherwood numbers are exhibited and examined for various values of the
controlling parameters to display the interesting aspects of the solutions. It
was found that the friction factor increases with the increase of the magnetic
field (M), whilst it is decreased with the linear momentum slip parameter (a).
The linear momentum slip parameter (a) reduces the heat transfer rates and the nanoparticles volume fraction rates.
Our results are compatible with the existing results for a special case.
Keywords:
Magnetic field; momentum slip boundary condition; non-Newtonian power–law
nanofluids; radiation
ABSTRAK
Gabungan
penyelesaian keserupaan-berangka aliran tergelincir bagi lapisan sempadan
magnetohidrodinamik nano bendalir hukum kuasa yang bukan-Newtonian yang boleh
mengalirkan elektrik atas permukaan bergerak serta beradiasi diterokai. Model nanobendalir
kami menggabungkan pengaruh termoforesis dan gerakan Brownian. Persamaan
pengangkutan asas dijadikan tidak berdimensi dahulu dan transformasi persamaan
yang sesuai digunakan untuk mengurangkan ke satu set persamaan pembezaan biasa
tak linear dengan syarat sempadan yang berkaitan. Persamaan yang dikurangkan
kemudian diselesaikan secara berangka. Keputusan grafik untuk halaju tidak
berdimensi, suhu, profil pecahan isi padu zarah-zarah nano, nombor Nusselt
serta Sherwood dipamerkan dan dikaji bagi pelbagai parameter kawalan untuk
memaparkan aspek-aspek yang menarik daripada penyelesaian. Kajian mendapati
bahawa regangan dinding ricih meningkatkan peningkatan medan magnet M, manakala
menurun dengan momentum lelurus slip parameter (a). Momentum lelurus slip parameter a mengurangkan kadar pemindahan
haba dan pecahan isi padu zarah nano. Keputusan kami adalah selaras dengan
keputusan yang sedia ada bagi kes khas.
Kata kunci: Keadaan sempadan
momentum slip; medan magnet; nanobendalir yang bukan Newtonian; radiasi
REFERENCES
Andersson, H.I. & Bech, K.H. 1992. Magnetohydrodynamic flow of
a power-law fluid over a stretching sheet. International Journal Non-Linear
Mechanics 27: 929-936.
Boutros, Y.Z.,
Abd-el-Malek, M.B., Badran, N.A. & Hassan, H.S. 2006. Lie-group method of
solution for steady two-dimensional boundary-layer stagnation-point flow towards a
heated stretching sheet placed in a porous medium. Meccanica 41:
681-691.
Buongiorno,
J. 2006. Convective transport in nanofluids. ASME Journal of Heat Transfer 128:
240-250.
Cheng,
P. & Minkowycz, W.J. 1977. Free convection about a vertical flat plate
embedded in a porous medium with application to heat transfer from a dike. J.
Geophysics Research 82: 2040-2044.
Cortell,
R. 2008. Radiation effects in the Blasius flow. Applied Mathematics and
Computations 198: 333-338.
Cortell,
R. 2011. Suction, viscous dissipation and thermal radiation effects on the flow
and heat transfer of a power law fluid past an infinite porous plate. Chemical
Engineering Research and Design 89: 85-93.
Crane,
L.J. 1970. Flow past a stretching plate. Journal of Applied Mathematics and
Physics 21: 645-647.
Elhajjar,
B., Bachir, G., Mojtabi, A., Fakih, C. & Charrier-Mojtabi M.C. 2010.
Modeling of Rayleigh-Benard natural convection heat transfer in nanofluid. Comptes
Rendus Mecaniquue 338: 350-354.
Ellahi,
R. 2009. Effects of the slip boundary condition on non- Newtonian flows in a
channel. Communications in Nonlinear Sciences and Numerical Simulations 14:
1377-1384.
Ellahi,
R., Raza, M. & Vafai, K. 2012. Series solutions of non-Newtonian nanofluids
with Reynolds’ model and Vogels’ model by means of the Homotopy analysis
method. Mathematical and Computer Modelling 55: 1876-1891.
Guo,
S.Z., Jiang, Y.L.J. & Xie, H.Q. 2010, Nanofluids Containing γ-Fe2O3
nanoparticles and their heat transfer enhancements. Nanoscale Research
Letters 5: 1222-1227.
Hady,
F.M., Ibrahim, F.S., Abdel-Gaied, S.M. & Eid, M.R. 2012. Radiation effect
on viscous flow of a nanofluid and heat transfer over a nonlinearly stretching
sheet. Nanoscale Research Letters 7: 229.
Hak,
G.M. 2002. Flow Physics in the MEMS Handbook. Boca Raton, FL: CRC Press.
Lioubashevski,
O., Katz, E. & Willner, I. 2004. Magnetic force effects on electrochemical
processes: A theoretical hydrodynamic model. Journal of Physical Chemistry B 108: 5778-5784.
Mahapatra,
T.R., Dholey, S. & Gupta, A.S. 2007. Momentum and heat transfer in the
magnetohydrodynamic stagnation point flow of a viscoelastic fluid toward a
stretching surface. Meccanica 42: 263-272.
Mahmoud,
M.A.A. 2011. Slip velocity effect on a non-Newtonian power law fluid over a
moving permeable surface with heat generation. Mathematical and Computer
Modelling 54: 1228-1237.
Makinde,
O.D. & Aziz, A. 2011. Boundary layer flow of a nanofluid past a stretching
sheet with a convective boundary condition. International Journal of Thermal
Sciences 50: 1326-1332.
Nadeem,
S. & Lee, C. 2012. Boundary layer flow of nanofluid over an exponentially
stretching surface. Nanoscale Research Letters 7: 94.
Nield,
D.A. & Kuznetsov, A.V. 2011. The Cheng-Minkowycz problem for the double
diffusive natural convective boundary-layer flow in a porous medium saturated
by a nanofluid. International Journal of Heat Mass Transfer 54: 374-378.
Noghrehabadi,
A., Pourrajab, R. & Ghalambaz, M. 2012. Effect of partial slip boundary
condition on the flow and heat transfer of nanofluids past stretching sheet
prescribed constant wall temperature. International Journal of Thermal
Sciences 54: 253-261.
Piazza,
R. & Parola, A. 2008. Thermophoresis in colloidal suspensions. Journal
of Physics: Condensed Matter 20: 153102.
Prasad,
K.V., Vajravelu, K. & Datti, P.S. 2010. Mixed convection heat transfer over
an on-linear stretching surface with variable fluid properties. International
Journal of Non-Linear Mechanics 45: 320-330.
Prasad,
R.V., Vasu, B., Bég, O.A. & Parshad, R.D. 2012. Thermal radiation effects
on magnetohydrodynamic free convection heat and mass transfer from a sphere in
a variable porosity regime. Communications in Nonlinear Science and
Numerical Simulation 17: 654-671.
Putra,
N., Roetzel, W. & Das, S.K. 2003. Natural convection of nanofluids. Heat
Mass Transfer 39: 775-784.
Raptis,
A., Perdikis, C. & Takhar, H.S. 2004. Effect of thermal radiation on MHD
flow. Applied Mathematics and Computations 153: 645-649.
Rosenbaum,
E.E. & Hatzikiriakos, S.G. 1997. Wall slip in the capillary flow of molten
polymers subject to viscous heating. AI Chem E Journal 43:
598–608.
Roux,
C.L. 2009. On flows of third-grade fluids with non-linear slip boundary
conditions. International Journal of Non- Linear Mechanics 44: 31-41.
Sakiadis,
B.C. 1961. Boundary layer behaviour on continuous solid surfaces: I. Boundary
layer equations for two-dimensional and axis symmetric flow. American
Institute Chemical Engineers Journal 7: 26-28.
Uddin,
M.J., Pop, I. & Ismail, A.I.M. 2012. Free convection boundary layer flow of
a nanofluid from a convectively heated vertical plate with linear momentum slip
boundary condition. Sains Malaysiana 41(11): 1475-1482.
Uddin,
M.J., Khan, W.A. & Ismail, A.I.M. 2012. MHD free convective boundary layer
flow of a nanofluid past a flat vertical plate with Newtonian heating boundary
condition. PLoS One 7(11): e49499.
Xue,
H. & Liao, S.J. 2009. Laminar flow and heat transfer in the boundary-layer
of non-Newtonian fluids over a stretching flat sheet. Computers and
Mathematics with Applications 57: 1425-1431.
Yu,
W. & Xie, H. 2012. A review on nanofluid: Preparation, stability
mechanisms, and applications. Journal of Nanomaterials Articles ID
435873.
*Corresponding author;
email: jashim_74@yahoo.com