Sains Malaysiana 43(1)(2014): 73–80
Optimization
of Submerged Culture Conditions for the Production of
Mycelial Biomass
and Exopolysaccharides from Lignosus rhinocerus
(Pengoptimuman Kultur Tenggelam untuk Penghasilan Biojisim Miselium
dan Eksopolisakarida Lignosus rhinocerus)
WEI HONG LAI1*, SAADIAH
MOHD
SALLEH2, FAUZI
DAUD2, ZAMRI
ZAINAL2,
ABAS MAZNI
OTHMAN3& NORIHAN MOHD SALEH1
1Agro-Biotechnology
Institute, Ministry of Science, Technology and Innovation
c/o
Malaysian Agricultural Research and Development Institute, 43400 Serdang,
Selangor, Malaysia
2School
of Biosciences & Biotechnology, Faculty of Science & Technology
Universiti
Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
3Strategic
Livestock Research Centre, Malaysian Agricultural Research and Development
Institute
43400
Serdang, Selangor, Malaysia
Received:
19 September 2012/Accepted: 19 April 2013
ABSTRACT
Tiger's Milk mushroom (Lignosus rhinocerus) is a highly priced medicinal mushroom utilized
in traditional medicine to treat various diseases. However, due
to insufficient wild L. rhinocerus, submerged culture conditions
and nutritional requirements for the production of mycelial biomass
and exopolysaccharide (EPS)
from L. rhinocerus were studied using one-factor-at-a-time
and orthogonal matrix method in shake flask culture. The optimal
pH and temperature for ideal production of mycelial biomass and
EPS were
found to be at pH6 and 25°C, respectively. The optimal
compositions for mycelial biomass production were 80 g/L of glucose,
4 g/L of potassium nitrate, 0.4 g/L of FeSO4.7H2O
and 0.1 g/L of CaCI2. Subsequently, the optimal compositions
for EPS production were 80 g/L of glucose,
4 g/L of potassium nitrate, 1.4 g/L of FeSO4.7H2O
and 1.1 g/L of CaCI2. The maximum mycelial biomass
and EPS concentrations achieved in a 1.5 L stirred-tank bioreactor
were 6.3788 g/L and 1.2 g/L, respectively. Mycelial biomass production
was about 3 times higher than that at the basal medium. However,
EPS
production indicated no significant difference at
the basal medium. In addition, the concentrations for α-amylase,
β-amylase, cellulase and invertase in optimal medium were 2.87,
1.07, 3.0 and 3.0 mg/mL, respectively. Current findings suggest
that the production of mycelial biomass and EPS
of L. rhinocerus can be enhanced dramatically
by controlling the culture conditions and modifying the medium's
composition.
Keywords: Exopolysaccharides; Lignosus rhinoceros; mycelial biomass; orthogonal matrix
method; submerged culture
ABSTRAK
Cendawan Susu Harimau (Lignosus rhinocerus) adalah cendawan bernilai yang sering digunakan
dalam perubatan tradisi untuk merawat pelbagai penyakit. Namun,
disebabkan kekurangan bekalan L. rhinocerus liar, maka kajian
penghasilan biojisim miselium dan eksopolisakarida (EPS)
daripada cendawan ini dijalankan menggunakan kaedah matriks ortogon
satu faktor pada satu masa untuk memperoleh keadaan pengkulturan
tenggelam yang optimum. Nilai pH dan suhu optimum untuk penghasilan
biojisim miselium dan EPS
dalam medium lengkap cendawan (MLC) didapati adalah pada pH6 dan 25°C.
Komposisi optimum untuk penghasilan biojisim miselium ialah 80 g/L
glukosa, 4 g/L kalium nitrat, 0.4 g/L FeSO4.7H2O
dan 0.1 g/L CaCI2. Manakala, komposisi optimum
untuk penghasilan EPS ialah 80 g/L glukosa, 4 g/L kalium
nitrat, 1.4 g/L FeSO4.7H2O
dan 1.1 g/L CaCI2. Penghasilan biojisim miselium
dan EPS telah dipertingkatkan dengan menggunakan 1.5 L tangki
bioreaktor dan penghasilan biojisim miselium dan EPS yang
maksimum ialah 6.3788 g/L dan 1.2 g/L. Di samping itu, kepekatan
α-amilase, β-amilase, selulase dan invertase dalam
medium yang optimum masing-masing adalah 2.87, 1.07, 3.0 dan 3.0
mg/mL. Penemuan semasa mencadangkan bahawa penghasilan biojisim
miselium dan EPS L. rhinocerus boleh dipertingkatkan
secara mendadak melalui pengawalan keadaan pengkulturan dan komposisi
medium.
Kata kunci: Biojisim miselium; eksopolisakarida; kaedah
matriks ortogon; kultur tenggelam; Lignosus rhinoceros
REFERENCES
Adeniran, H.A., Abiose, S.H. & Ogunsua, A.O.
2010. Production of fungal β-amylase and Amyloglucosidase on some Nigerian
agricultural residues. Food Bioprocess Technol. 3: 693-698.
Bae, J.T., Sinha, J., Park, J.P., Song, C.H. &
Yun, J.W. 2000. Optimization of submerged culture conditions for
exo-polymer production by Paecilomyces japonica. J.
Microbiol. Biotech. 10: 482-487.
Boddy, L. 1983. Effect of temperature and water
potential on growth rate of wood-rotting basidiomycetes. Trans. Br. Mycol.
Soc. 80: 141-149.
Burns, P.J., Yeo, P., Keshavarz, T., Roller, S.
& Evans, C.S. 1994. Physiological studies of exopolysaccharide
production from the basidiomycete Pleurotus florida. Enzyme
Microbiol. Technol. 16: 566-572.
Cartwright, K.S.G. & Findlay, W.P.K. 1934.
Studies in the physiology of wood-destroying fungi. Ann. Bot. 48:
481-495.
Chardonnet, C.O., Sams, C.E. & Conway, W.S.
1999. Calcium effect on the mycelial cell walls of Botrytis cinerea. Phytochemistry 52: 967-973.
Chiu, Y.W., Zeng, C.L., Chian, P.L. & Shiu,
H.W. 2008. Effect of carbon and nitrogen sources on the production and
carbohydrate composition of exopolysaccharides by submerged culture of Pleurotus
citrinopileatus. J. Food Drug Anal. 16(2): 61-67.
Cochrane, V.W. 1958. Physiology of Fungi.
New York: John Wiley.
Cooke, R.C. & Whipps, J.M. 1993. Ecophysiology
of Fungi. Oxford, U.K.: Blackwell Scientific.
Coral, G., Arikan, B., Onaldi, M.N. &
Govenmez, H. 2002. Some properties of crude carboxymethyl cellulase of Aspergillus
niger Z10 wild-type strain. Turk. J. Biol. 26: 209-213.
Cui, B.K., Tang, L.P. & Dai, Y.C. 2010. Morphological and molecular
evidences for a new species of Lignosus (Polyporales, Basidiomycota)
from tropical China. Mycol. Prog. 1-5.
Dong, C.H. & Yao,
Y.J. 2005. Nutritional requirements of mycelial growth of Cordyceps sinensis in
submerged culture. J. Appl. Microbiol. 99: 483-492.
Douanla-Meli, C. & Langer, E. 2003. A new species of Lignosus
(Polyporaceae) from Cameroon. Mycotaxon 86: 389-394.
Edwards, V., Goktepe, I., Milford, B., Isikhuemhen, O.S.,
Yu, J. & Ahmedna, M. 2005. Inhibitory activity of tiger milk mushroom on
cancer cells. IFT annual meeting. New Orleans, Lousiana.
Elisashvili, V.I., Kachlishvili, E.T. & Wasser, S.P.
2009. Carbon and nitrogen source effects on basidiomycetes exopolysaccharide
production. Appl. Biochem. Microbiol. 45(5): 531-535.
Escamilla, S.E.M., Dendooven, L., Magana, I.P., Parra, S.R.
& Torre, M.D. 2000. Optimization of gibberellic acid production
by immobilized Gibberella fujikuroi mycelium in fluidized
bioreactor. J. Biotechnol. 76: 147-155.
Guo, X., Zou, X. & Min, S. 2009. Optimization of a
chemically-defined medium for mycelial growth and polysaccharide production by
medicinal mushroom Phellinus igniarius. World J. Microbiol.
Biotechnol. 25: 2187-2193.
Hwang, H.J., Kim, S.W., Xu, C.P., Choi, J.W. & Yun, J.W.
2003. Production and molecular characteristics of four groups of
exopolysaccharides from submerged culture of Phellinus gilvus. J.
Appl. Microbiol. 94: 708-719.
Jonathan, S.G. & Fasidi, I.O. 2001. Effect of carbon,
nitrogen and mineral sources on growth of Psathyrella atroumbonata (Pegler),
a Nigerian edible mushroom. Food Chem. 72: 479-483.
Kammoun, R., Naili, B. & Bejar, S. 2008. Application of
a statistical design to the optimization of parameters and culture medium for
α-amylase production by Aspergillus oryzae CBS 819.72 grown on
gruel (wheat grinding by-product). Biores. Tech. 99: 5602-5609.
Kim, H.O., Lim, J.M., Joo, J.H., Kim, S.W., Hwang, H.J., Choi,
J.W. & Yun, J.W. 2005. Optimization of submerged culture condition
for the production of mycelial biomass and exopolysaccharides by
Agrocybe cylindracea. Bioresource Technology 96:
1175-1182.
Lai, W.H., Siti Murni, M.J., Fauzi, D., Abas Mazni, O. &
Norihan, M.S. 2011. Optimal culture conditions for mycelia growth of Lignosus
rhinocerus. Mycobiology 39(2): 92-95.
Lee, M.T., Chen, W.C. & Chou, C.C. 1997. Medium improvement
by orthogonal array designs for cholesterol oxidase production by
Rhodococcus equi No. 23. Process Biochem. 32: 697-703.
Lee, S.S., Chang, Y.S. & Noraswati, N.M. 2009.
Utilization of macrofungi by some indigenous communities for food and medicine
in Peninsular Malaysia. For. Ecol. Manag. 257: 2062-2065.
Li, Y., Chen, J., Lun, S.Y. & Rui, X.S. 2001. Efficient
pyruvate production by a multi-vitamin auxotroph of Torulopsis
glabrata: Key role and optimization of vitamin levels. Appl.
Microbiol. Biotechnol. 55: 680-685.
Lv, Y.L., Sun, L.H., Zhang, F.S., Zhoa, Y. & Guo, S.X.
2010. The effect of cultivation conditions on the mycelia growth of a
dark-septate endophytic isolate. African Journal of Microbiology Research 4:
602-607.
Manzoni, M. & Rollini, M. 2001. Isolation and
characterization of the exopolysaccharide produced by Daedalea quercina. Biotech. Lett. 23: 1491-1497.
Miller, G.L. 1959. Use of dinitrosalicylic acid reagent for
determination of reducing sugars. Anal. Chem. 31: 426-428.
Montgomery, D.C. 1999. Design and Analysis of Experiment.
4th ed. NewYork: Wiley.
Núñez, M. & Ryvarden, L. 2001. East Asian polypores 2.
Polyporaceae s. lato. Synop. Fungorum 14: 170-522.
Paula, M.S. & Pérola, O.M. 2010. Application of
microbial α-amylase in industry. Brazilian Journal of Microbiology 41:
850-861.
Qing, H.F. & Jian, J.Z. 2002. Effect of initial pH on
production of ganoderic acid and polysaccharide by submerged fermentation of Ganoderma
lucidum. Process Biochem. 37: 769-774.
Ryvarden, L. & Johansen, I. 1980. A Preliminary
Polypore Flora of East Africa. Oslo: Fungi flora.
Shih, I.L., Pan, K. & Hsieh, C. 2006. Influence of
nutritional components and oxygen supply on the mycelial growth and bioactive
metabolites production in submerged culture of Antrodia cinnamomea. Process
Biochem. 41: 1129-1135.
Wei, C.H., Zhou, Z., Shi, F.C. & Yong, Q.L. 2008.
Optimization for the production of exopolysaccharides from Fomes fomentarius in submerged culture and its antitumor effect in vitro. Bioresour.
Technol. 99: 3187-3194.
Xu, C.P., Kim, S.W., Hwang, H.J., Choi, H.J. & Yun, J.W.
2003. Optimization of submerged culture conditions for mycelial growth and
exo-biopolymer production by Paecilomyces
tenuipes C240. Process Biochem. 38: 1025-1030.
Yang, F.C., Huang, H.C. & Yang, M.J. 2003. The influence
of environmental conditions on the mycelial growth of Antrodia cinnamomea in submerged cultures. Enzyme Microb.
Technol. 33: 395-402.
Yang, F.C. & Liau, C.B. 1998. Effects of cultivating
conditions on the mycelial growth of Ganoderma lucidum in submerged
flask cultures. Bioprocess Eng. 19: 233-236.
*Corresponding
author; email: weihan_1980@yahoo.com
|