Sains Malaysiana 43(2)(2014): 203–209
Investigation
of the Gelation Mechanism between Amino Acid Surfactant Based Microemulsion
and
Kappa-Carrageenan Gel Network
(Kajian tentang Mekanisme Penggelan antara Mikroemulsi Berdasarkan
Surfaktan
Amino-Asid dan Rangkaian Gel Kappa-Carrageenan)
NASIMA AKTER1*, SHAHIDAN
RADIMAN1, FAIZAL
MOHAMED1, NAZARUDDIN
BIN RAMLY2, EDY
GIRI
RACHMAN
PUTRA3&
ARI SULISTYO RINI4
1School of Applied Physics, Faculty of Science and Technology,
Universiti Kebangsaan Malaysia
43600 Bangi, Selangor, Malaysia
2School of Chemical Sciences and Food Technology, Universiti
Kebangsaan Malaysia
43600 Bangi, Selangor, Malaysia
3Neutron Scattering Laboratory, National Nuclear Energy Agency
of Indonesia (BATAN)
Gedung 40 Kawasan Puspiptek Serpong, Tangerang 15314, Indonesia
4Department of Physics, Faculty of Mathematics and Natural Sciences,
University of Riau,
Pekanbaru 28293, Riau, Indonesia
Received: 7 January 2013/Accepted: 29 July 2013
ABSTRACT
Kappa-carrageenan is one form of necessary hydrocolloid.
Hydrocolloids are macromolecular materials, which swell upon absorption of
water; in some cases, forming a stiff gel in the presence of additives. This
property is very important to suspend nanocarriers into gel network, which
provide them long time stability at a varying temperature range. In this work,
we prepared microemulsion and trapped these particles inside the
kappa-carrageenan gel network. The microemulsion was composed of sodium
N-lauroylsarcosinate hydrate (SNLS), oleic acid and deionized
water. The purpose of this study was to immobilize them into the gel network,
giving longer shelf life at a range of temperatures for oral drug delivery.
Morphological properties were investigated by transmission electron microscope
(TEM),
dynamic light scattering (DLS) and Fourier transform infrared (FTIR)
spectra. The TEM results showed that microemulsions are trapped in the
gel network, and the diameter of the microemulsions are below 100 nm, which is
comparable with the DLS results. The important functional
groups of kappa carrageenan and microemulsion were shown from the FTIR result of the complex microemulsion gel. These results confirmed
the interaction between SNLS based microemulsion and kappa
carrageenan gel.
Keywords: Gel; kappa-carrageenan; microemulsion
ABSTRAK
Kappa-carrageenan adalah sejenis hidrokoloid. Hidrokoloid merupakan bahan makromolekul yang
mengembang apabila menyerap air; dalam kes tertentu boleh membentuk gel yang
tegar dengan penambahan bahan aditif. Sifat ini sangat
penting bagi mengapungkan nanopembawa ke dalam rangkaian gel dan memberikan
kestabilan jangka panjang pada julat suhu yang luas. Dalam kajian ini,
kami menyediakan mikroemulsi yang diperangkap ke dalam rangkaian gel kappa-carrageenan. Mikroemulsi mempunyai komposisi daripada sodium
–N-lauroylsarcosinat hidrat (SNLS), asid oleik dan air
nyahion. Tujuan kajian ini adalah untuk memegunkan
mikroemulsi ke dalam rangkaian gel bagi memberikan masa simpan yang lama pada
julat suhu penghantaran dadah secara oral. Sifat
morfologi telah ditentukan dengan menggunakan mikroskop elektron transmisi (TEM),
serakan cahaya dinamik (DLS) dan spektrum inframerah
penjelmaan Fourier (FTIR). Hasil TEM menunjukkan
bahawa mikroemulsi terperangkap dalam rangkaian gel dengan diameter mikroemulsi kurang daripada 100 nm tekal dengan ukuran DLS.
Kumpulan berfungsi utama kappa-carrageenan dan mikroemulsi juga dikenal
pasti melalui pencirian spektroskopi-FTIR dalam kompleks gel
mikroemulsi. Hasil kajian membuktikan bahawa interaksi yang
kuat wujud antara mikroemulsi berdasarkan SNLS dan kappa-carrageenan gel.
Kata kunci: Gel; kappa-carrageenan; mikroemulsi
REFERENCES
Abad, L.V., Relleve, L.S., Aranilla, C.T. &
Rosa, A.M.D. 2003. Properties of radiation synthesized PVP-kappa carrageenan
hydrogel blends. Radiat. Phys. Chem. 68: 901–908.
Akter, N., Radiman, S.,
Mohamed, F., Rahman, I.A. & Reza, M.I.H. 2011. Ternary phase behaviour and
vesicle formation of a sodium N-lauroylsarcosinate hydrate/1-decanol/water
system. Sci. Rep. 1: 71.
Akter, N., Radiman, S.,
Mohamed, F. & Reza, M.I.H. 2013. Self assembled potential bio nanocarriers for drug delivery. Mini
Rev. Med. Chem. 13: 1327-1339.
Anderson, N.S., Dolan, T.C.S. & Rees, D.A.
1968. Carrageenans. Part III. Oxidative hydrolysis of
methylated κ-carrageenan and evidence for a masked repeating structure. J. Chem. Soc. C. 1968: 596-601.
Anderson, N.S., Campbell,
J.W., Harding, M.M., Rees, D.A. & Samuel, J.W.B. 1969. X-ray diffraction studies of polysaccharide
sulphates: Double helix models for k- and l- carrageenan. J. Mol. Biol. 45:
85-99.
Borhstrom, J., Piculell, L., Viebke, C. &
Talmon, Y. 1996. On the structure of kappa-carrageenan
helices. A study by cryo- TEM, optical rotation and
viscometry. Int. J. Biol. Macromol. 18: 223-229.
Bourriot, S., Garnier, C.
& Doublier, J.L. 1999. Micellar casein– kcarrageenan mixtures. I. Phase separation and ultrastructure. Carbohydr. Polym. 40:
145–157.
Braudo, E.E., Muratalieva, I.R., Plashchina,
I.G., Tolstoguzov, V.B. & Markovich, I.S. 1991. Studies
on the mechanisms of gelation of kappa-carrageenan and agarose. Colloid
Polym. Sci. 269: 1148-1156.
Coats, J. 2000. Interpretation of infrared spectra, a practical
approach. In Encyclopedia of Analytical Chemistry, edited by Meyers,
R.A. Chichester: John Wiley & Sons Ltd. pp. 10815–10837.
Coimbra, M.A., Barros, A.,
Barros, M., Rutledge, D.N. & Delgadillo, I. 1998. Multivariate analysis of
uronic acid and neutral sugars in whole pectic samples by FT-IR spectroscopy. Carbohyd. Polym. 37(3): 241-248.
Fennema, O.R. 2002. Food Chemistry. 3rd
ed. USA: CRC Press.
Flory, P.J. 1941. Molecular size distribution in three dimensional polymer. I. Gelation. J. Am.
Chem. Soc. 63: 3083-3090.
Ghosh,
S. & Dey, J. 2011. Interaction of sodium N-lauroylsarcosinate with
N-alkylpyridinium chloride surfactants: Spontaneous formation of pH-responsive,
stable vesicles in aqueous mixtures. J. Colloid Interface Sci. 358:
208-216.
Gómez-Ordóñez,
E., Alonso, E. & Rupérez, P. 2011. FTIR-ATR spectroscopy as a tool for
polysaccharide identification in edible drown and red seaweeds. Food
Hydrocolloid 25: 1514-1520.
Infante, M.R., Perez, L., Pinazo, A., Clapes, P., Moran,
M.C., Angelet, M., Garcia, M.T., Vinardell, M.P. & Chimie, C.R. 2004. Amino acid-based surfactants. Comptes Rendus Chimie 7:
583-592.
Karande,
P., Jain, A., Arora, A., Ho, M.J. & Mitragotri, S. 2007. Synergistic
effects of chemical enhancers on skin permeability: A case study of sodium
lauroylsarcosinate and sorbitan monolaurate. Eur. J. Pharm. Sci. 31:
1-7.
Kolesov, D.V., Grigor′, T.E., Gavrilko, D.Y.,
Makhaeva, E.E., Yaminskii, I.V. & Khokhlov, A.R. 2008. AFM study of the structuration of an ionic surfactant and
phenylalanine with K-carrageenan. Prot. Met. 44: 447-450.
Morris, E.R., Rees, D.A. & Robinson, G. 1980. Cation-specific aggregation of carrageenan helices: Domain model of polymer gel
structure. Mol. Biol. 138: 349-362.
Piculell,
L. 1998. Gelling polysaccharides. Curr. Opin. Colloid Interface Sci. 3:
643-650.
Rees,
D.A., Morris, E.R., Thom, D. & Madden, J.K. 1982. Shapes
and interactions of carbohydrate chains. In The
Polysaccharides, Volume 1, edited by Aspinall, G.O. New York:
Academic press.
Rees,
D.A. 1969. Conformational analysis of polyscaaharides. Part II. Alternating co-polymers of the agar-carrageenan-chondroitin type by
model building in the computer with calculation of helical parameters. J.
Chem. Soc. B 1969: 217-226.
Rees,
D.A., Steele, I.W. & Williamson, F.B. 1969. Conformational
analysis of polysaccharides. Part III. The
relationship between stereochemistry and properties of some natural
polysaccharide sulphates. J. Polym. Sci. C. 28: 261-276.
Spagnuolo,
P.A., Dalgleish, D.G., Goff, H.D. & Morris, E.R. 2005. Kappa-carrageenan
interactions in systems containing casein micelles and polysaccharide
stabilizers. Food Hydrocolloid. 19: 371-377.
Stockmayer,
W.H. 1943. Theory of molecular size distribution and gel formation in
branched-chain polymers. J. Chem. Phys. 12: 45-98.
Synytsya, A., Kim, W., Kim, S., Pohl, R., Synytsya, A.,
Kvasnička, F., Čopíková, J. & Park, Y.I. 2010. Structure and antitumour activity of fucoidan isolated from sporophyll of
Korean brown seaweed Undaria pinnatifida. Carbohyd. Polym. 81:
41-48.
Tapia, C., Escobar, Z., Costa, E., Sapag-Hagar, J.,
Valenzuela, F., Basualto, C., Gai, M.N. & Yazdani-Pedram, M. 2004. Comparative studies on polyelectrolyte complexes and mixtures of
chitosan-alginate and chitosan carrageenan as prolonged diltiazem chorhydrate
release systems. Eur. J. Pharm. Biopharm. 57: 65-75.
Volery, P., Besson, R. & Schaffer-Lequart, C. 2004. Characterization of commercial carrageenans by Fourier transform infrared
spectroscopy using single-reflection attenuated total reflection. J. Agri.
Food Chem. 52: 7457- 7463.
Wu, N., Fu, L., Su, M., Aslam, M., Wong, K.C. & Dravid,
V.P. 2004. Interaction of fatty acid monolayers with
cobalt nanoparticles. Nano Letters 4: 383-386.
*Corresponding
author; email: nasima.physics@yahoo.com
|