Sains Malaysiana 43(2)(2014):
267–272
Nanoscale Patterning by AFM Lithography and its Application on
the Fabrication
of Silicon Nanowire Devices
(Pencorakan Berskala Nano dengan Litografi AFM dan
Aplikasinya dalam
Fabrikasi Peranti Nanowayar Silikon)
SABAR D. HUTAGALUNG*1, KAM
CHUNG
LEW2& TEGUH
DARSONO2
1Physics Department, Faculty of Science, Jazan University, Jazan,
Saudi Arabia
2School of Materials and Mineral Resources Engineering, Engineering
Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang, Malaysia
Received: 7 January 2013/Accepted: 19 July 2013
ABSTRACT
Many techniques have been applied to fabricate nanostructures via
top-down approach such as electron beam lithography. However, most of the
techniques are very complicated and involves many process steps, high cost
operation as well as the use of hazardous chemicals. Meanwhile, atomic force
microscopy (AFM)
lithography is a simple technique which is considered maskless and involves
only an average cost and less complexity. In AFM lithography, the
movement of a probe tip can be controlled to create nanoscale patterns on
sample surface. For silicon nanowire (SiNW) fabrication, a conductive tip was
operated in non-contact AFM mode to grow nanoscale oxide patterns on
silicon-on-insulator (SOI) wafer surface based on local anodic
oxidation (LAO)
mechanism. The patterned structure was etched through two steps of wet etching
processes. First, the TMAH was used as the etchant solution for Si
removing. In the second step, diluted HF was used to remove oxide mask in order to
produce a completed SiNW based devices. A SiNW based device which is formed by
a nanowire channel, source and drain pads with lateral gate structures can be
fabricated by well controlling the lithography process (applied tip voltage and
writing speed) as well as the etching processes.
Keywords: AFM lithography; nanodevices; nanoscale
pattern; silicon nanowire
ABSTRAK
Pelbagai teknik telah digunakan untuk fabrikasi nanostruktur
melalui pendekatan atas-bawah seperti litografi alur elektron. Walau
bagaimanapun, teknik tersebut sangat rumit dan prosesnya memerlukan banyak
langkah, kos operasi tinggi dan menggunakan bahan kimia merbahaya. Manakala,
litografi mikroskop daya atom (AFM) merupakan suatu teknik yang mudah serta
dapat dikatakan tanpa topeng, melibatkan kos sederhana dan prosesnya tidak
rumit. Dalam litografi AFM, pergerakan tip penduga dapat dikawal
untuk menghasilkan corak berskala nano pada permukaan sampel. Bagi fabrikasi
nanowayar silikon (SiNW), sebatang tip konduktif dioperasikan dalam mod AFM tak-sentuh
untuk menumbuhkan corak oksida berskala nano pada permukaan wafer silikon-di
atas-penebat (SOI) berdasarkan mekanisme pengoksidaan anod setempat (LAO). Struktur tercorak
kemudian dipunar melalui dua langkah proses punaran basah. Pertama, TMAH telah
digunakan sebagai larutan punar bagi menghilangkan Si. Langkah kedua, HF yang
dicairkan digunakan menghilangkan topeng oksida untuk menghasilkan satu peranti
lengkap berasaskan SiNW. Struktur peranti SiNW yang terdiri daripada suatu
saluran nanowayar, pad sumber dan longkang dengan get sisi dapat dihasilkan
apabila proses litografi (voltan yang dikenakan pada tip dan laju pencorakan)
serta proses punaran dikawal dengan baik.
Kata kunci: Corak berskala nano; litografi AFM;
nanowayar silikon; peranti nano
REFERENCES
Cervenka, J., Kalousek, R., Bartos, M., Skoda,
D., Tomanec, O. & Sikola, T. 2006. Fabrication of nanostructures on Si(100)
and GaAs(100) by local anodic oxidation. Applied Surface Science 253:
2373-2378.
Fang, T-H., Wang, T.H. & Wu, K-T. 2008.
Local oxidation of titanium films by non-contact atomic force microscopy. Microelectronic
Engineering 85: 1616-1623.
Fang, T-H. 2004. Mechanisms of nanooxidation of
Si(100) from atomic force microscopy. Microelectronics Journal 35:
701-707.
Fu, E.S., Wang, X-S. & Williams, E.D. 1999.
Characterization of structures fabricated by atomic force microscope
lithography. Surface Science 438: 58-67.
Giesbers, A.J.M., Zeitler, U., Neubeck, S.,
Freitag, F., Novoselov, K.S. & Maan, J.C. 2008. Nanolithography and
manipulation of graphene using an atomic force microscope. Solid State
Communications 147: 366-369.
Gwo, S. 2001. Scanning probe oxidation of Si3N4 masks
for nanoscale lithography, micromachining, and selective epitaxial growth on
silicon. Journal of Physics and Chemistry of Solids 62: 1673-1687.
Held, R., Heinzel, T., Studerus, P. &
Ensslin, K. 1998. Nanolithography by local anodic oxidation of metal films
using an atomic force microscope. Physica E: Low-dimensional Systems and
Nanostructures 2: 748-752.
Hsu, H-F. & Lee, C-W. 2008. Effects of
humidity on nano-oxidation of silicon nitride thin film. Ultramicroscopy 108:
1076-1080.
Hu, X. & Hu, X. 2005. Analysis of the
process of anodization with AFM. Ultramicroscopy 105: 57-61.
Hutagalung, S.D., Darsono, T., Yaacob, K.A.
& Ahmad, Z.A. 2007. Effects of tip voltage and writing speed on the
formation of silicon oxide nanodots patterned by scanning probe lithography. Journal
of Scanning Probe Microscopy 2: 28-31.
Hutagalung, S.D. & Lew, K.C. 2011.
Current-voltage characteristics of side-gated silicon nanowire transistor
fabricated by AFM lithography. Advanced Materials Research 277: 84-89.
Hutagalung, S.D. & Lew, K.C. 2012. Effect of
TMAH etching duration on the formation of silicon nanowire transistor patterned
by AFM nanolithography. Sains Malaysiana 41: 1023-1028.
Kuramochi, H., Ando, K. & Yokoyama, H. 2003.
Effect of humidity on nano-oxidation of p-Si(001) surface. Surface Science 542:
56-63.
Kuramochi, H., Ando, K., Tokizaki, T., Yasutake,
M., Perez- Murano, F., Dagata, J.A. & Yokoyama, H. 2004. Large scale high
precision nano-oxidation using an atomic force microscope. Surface Science 566-568:
343-348.
Lee, S.K., Lee, S.Y., Rogdakis, K., Jang, C.O.,
Kim, D.J., Bano, E. & Zekentes, K. 2009. Si nanowire p-FET with asymmetric
source-drain I-V characteristics. Solid State Communications 149:
461-463.
Lew, K.C. & Hutagalung, S.D. 2010. Silicon nanowire
transistor fabricated by AFM nanolithography followed by wet chemical etching
process. International Journal of Nanoscience 9: 289-293.
Nguyen, Q.D. & Elwenspoek, M. 2006. Characterisation of
anisotropic etching in KOH using network etch rate function model: Influence of
an applied potential in terms of
microscopic properties. Journal of Physics: Conference Series 34:
1038-1043.
Park, J.W., Lee, S.S., So, B.S., Jung, Y.H., Kawasegi, N.,
Morita, N. & Lee, D.W. 2007. Characteristics of mask layer on (100) silicon
induced by tribo-nanolithography with diamond tip cantilevers based on AFM. Journal
of Materials Processing Technology 187-188: 321-325.
Rosoft, M. 2002. Nano-Surface Chemistry. New York:
Marcel Dekker, Inc.
Salem, B., Dhalluin, F., Abed, H., Baron, T., Gentile, P.,
Pauc, N. & Ferret, P. 2009. Self-connected horizontal silicon nanowire
field effect transistor. Solid State Communications 149: 799-801.
Suk, S.D., Yeo, K.H., Cho, K.H., Li, M., Yeoh, Y.Y., Lee,
S.Y., Kim, S.M., Yoon, E.J., Kim, M.S., Oh, C.W., Kim, S.H., Kim, D.W. &
Park, D. 2008. High-performance twin silicon nanowire MOSFET (TSNWFET) on bulk
Si wafer. IEEE Transactions on Nanotechnology 7: 181-184.
Williams & Muller 1996.
Xie, X.N., Chung, H.J., Sow, C.H. & Wee, A.T.S. 2006.
Nanoscale materials patterning and engineering by atomic force microscopy
nanolithography. Materials Science and Engineering: R: Reports 54: 1-48.
Yoon, C., Kang, J., Yeom, D., Jeong, D.Y. & Kim, S.
2008. Comparison of electrical characteristics of back- and top-gate Si
nanowire field-effect transistors. Solid State Communications 148:
293-296.
*Corresponding
author; email: mrsabar@eng.usm.my
|