Sains Malaysiana 43(2)(2014):
283–287
Carbon Ion-beam-induced Modification in Structural and
Electrical Properties
of ZnO Nanowires
(Alur-ion Karbon Teraruh terhadap Modifikasi Struktur dan Sifat
Elektrik Nano Wayar ZnO)
JAVED IQBAL*1, H. TABASSUM1, ISHAQ
AHMAD2, TARIQ
JAN1, C.F.
DEE3,
M. MADHUKU4A.A. UMAR3& N.
AHMAD1
1Laboratory of Nanoscience and Technology, Department of Physics
International Islamic University Islamabad, Pakistan
2Experimental Physics Labs, National Center for Physics, Islamabad
44000, Pakistan
3Institute of Microengineering and Nanoelectronics, Universiti
Kebangsaan Malaysia
43600 Bangi, Selangor, Malaysia
4Themba LABS, Private Bag 11, Wits 2050, Johannesburg, South
Africa
Received: 7 January 2013/Accepted: 31 July 2013
ABSTRACT
Zinc oxide nanowires (ZnO NWs) have an efficacious place in nanoworld
due to their tremendous properties and applications. In the present work,
structural and electrical properties of ZnO NWs have been modified by
carbon (C) ions- beam irradiation. With ion-beam energy of 0.8MeV, the physical
behaviors of NWs
have been studied under different doses from 1×1012 to 1×1014 ions/cm2.
The microstructural and Raman spectroscopy studies showed that the wurtzite
crystal structure of the ZnO NWs has been changed into disordered amorphous
one under high C ion doses. Whereas, the XRD results showed that Zn nanoparticles are
fabricated at high C ion-beam irradiation on ZnO NWs. Scanning electron
microscopy (SEM)
depicts the formation of cross junctions and parallel junctions between ZnO NWs
after C ion irradiation. DC conductivity measurements have confirmed
that the conductivity of NWs decreases with increase in C ion doses. It
is concluded that the lattice defects significantly contribute to decrease in
the conductivity of ZnO NWs.
Keywords: Electrical conductivity; ion-beam irradiation; lattice
defects; ZnO nanowires
ABSTRAK
Nano wayar zink oksida (Zn NWs) telah mendapat perhatian di dalam dunia
nano kerana sifat dan kegunaannya yang pelbagai. Dalam kajian yang dilakukan,
struktur dan sifat elektrik Zn NWs dimodifikasi dengan radiasi alur-ion
karbon. Kelakuan fizikal NMs telah dikaji dengan menggunakan tenaga alur-ion
sebanyak 0.8 MeV, pada julat 1×1012 sehingga 1×1014 ion/cm2. Kajian mikrostruktur dan spektrum Raman pada dos C yang tinggi menunjukkan
struktur hablur wurtzit ZnO telah bertukar kepada amorfus yang tidak tersusun.
Manakala keputusan XRD menunjukkan nanozarah Zn, terbentuk di
atas Zn NWs
apabila dikenakan pancaran alur-ion C yang tinggi. Mikroskop elektron imbasan (SEM)
menunjukkan kehadiran simpang silang dan simpang selari antara Zn NWs
selepas radiasi ion C. Pengujian kekonduksian DC mengesahkan kekonduksian NMs
berkurangan dengan peningkatan dos ion C. Sebagai kesimpulan, kecacatan kekisi
yang ketara telah menyebabkan penurunan kekonduksian ZnO NWs.
Kata kunci: Kecacatan kekisi; kekonduksian
elektrik; nano wayar Zn; radiasi alur-ion
REFERENCES
Alim, K., Fonoberov, V-A., Shamsa, M. &
Balandin, A-A. 2005. Micro-Raman investigation of optical phonons in ZnO
nanocrystals. J. Appl. Phys. 97: 124313.
Choi, K-S., Ok, C-W., Jo, S-Y., Bai, K-H. &
Im, Y-H. 2008. Ion bombardment effects on ZnO nanowires during plasma
treatment. Appl. Phys. Lett. 93: 033112.
Dee, C-F., Ishaq, A., Long, Y., Xingtai, Z.
& Burhanuddin, Y.M. 2011. Amorphization of ZnO nanowires by proton beam
irradiation. NANO 6: 259-263.
Dee, C-F., Majlis, B-Y. & Salleh, M-M. 2008.
Electrical characterization of cross linked ZnO nanostructures grown on Si and
Si/SiO2. Sains Malaysiana 37: 281-283.
Dutta, M. & Basak, D. 2009. Multiwalled carbon nanotubes/ZnO
nanowires composite structure with enhanced ultraviolet emission and faster
ultraviolet respons. Chem. Phys. Lett. 480: 253-257.
Ishaq, A., Usman, M.,
Dee, C.F., Khurram, A.A., Yan, L., Zhou, X.T., Nadeem, A., Naseem, S., Rafique,
H.M. & Majlis, B.Y. 2013. Effect for hydrogen, nitrogen, phosphorous, and
argon ions irradiation on ZnO NWs. J. Nanopart. Res. 15: 1467.
Ishaq, A., Dee, C.F., Husnain, G., Rafique, H.M., Yan, L.
& Naseem, S. 2012. Use of high-intensity electron beam to form nanohole,
induce bending and fabricate nanocontact on a ZnO nanowire. Micro & Nano
Lett. 7: 122-124.
Ishaq, A., Ni, Z., Yan, L., Gong, J. & Zhu, D. 2010.
Constructing carbon nanotube junctions by Ar ion beam irradiation. Rad.
Phys. Chem. 79: 687-691.
Ishaq, A., Sobia, A-R., Zhou, G-Y., Yan, L. & Zhou, X-T.
2012. Optically transparent carbon nanowire thin film. Journal of
Experimental Nanoscience 7(1): 53.
Javed, I., Xiaofang, L., Huichao, Z., Chongchao, P., Yong,
Z., Dapeng, Y. & Ronghai, Y. 2009. Room-temperature spin glass and near
band edge (NBE) properties of highly disorder (FeCo)0.03Zn0.97O and
(FeCoNi)0.03Zn0.97O nanorods. Journal of Applied Physics 106: 043902.
Lin, X., He, X-B., Yang, T-Z., Guo, W., Shi, D-X., Gao,
H-J., Ma, D-D., Lee, S-T., Liu, F. & Xie, X-C. 2006. Intrinsic
current-voltage properties of nanowires with four-probe scanning tunneling
microscopy: A conductance transition of ZnO nanowires. Appl. Phys. Lett. 89:
043103.
Ni, Z., Li, Q., Gong, J., Zhu, D. & Zhu, Z. 2007.
Structural change of carbon nanotubes produced by Si ion beam irradiation.
Nucl. Instrum. Meth. Phys. Res. B 260: 542-546.
Ozgur, U., Alivov, Y-I., Liu, C., Teke, A., Reshchikov,
M-A., Dogan, S., Avrutin, V., Cho, S-J. & Morkoc¸ H. 2005. A comprehensive
review of ZnO materials and devices. J. Appl. Phys. 98: 041301.
Pan, C-J., Hsu, H-C., Cheng, H-M., Wu, C-Y. & Hsieh,
W-F. 2007. Structural and optical properties of ZnMgO nanostructures formed by
Mg in-diffusion ZnO nanowires. J. Solid State Chem. 180: 1188-1192.
Sahoo, S., Dhara, S., Sivasubramanian, V., Kalavathi, S.
& Arora, A.K. 2009. Phonon confinement and substitutional disorder in
Cd1−xZnxS nanocrystals. J. Raman Spectrosc. 40: 1050-1054.
Shan, F-K., Shin, B-C., Kim, S-C. & Yu, Y-S. 2003.
Structural, optical, and electrical properties of transparent conductive
In2O3-doped ZnO thin films grown by pulsed laser deposition. J. Kor. Phys.
Soc. 42: 626-634.
Von, W-H., Pickenhain, R., Schmidt, H., Brandt, M., Biehne,
G., Lorenz, M. & Grundmann, M. 2006. Deep acceptor states in ZnO single
crystals. Appl. Phys. Lett. 89: 092122.
Wang, Z. 2009. Ten years venturing in ZnO nanostructures:
From discovery to scientific understanding and technology applications. Chinese
Science Bulletin 54: 4021-4034.
Wu, Y-L., Tok, A-I., Boey, F-Y., Zeng, X-T. & Zhang,
X-H. 2007. Surface modification of ZnO nanocrystals. Appl. Surf. Sci. 253:
5473-5479.
Xiang, B., Wang, P-W., Zhang, X-Z., Dayeh, S-A., Aplin,
D-P., Soci, C., Yu, D-P. & Wang, D-L. 2007. Rational synthesis of p-type
zinc oxide nanowire arrays using simple chemical vapor deposition. Nano
Lett. 7: 323-328.
Yang, P., Yan, H., Mao, S., Russo, R., Johnson, J., Saykally,
R., Morris, N., Pham, J., He, R. & Chao, H. 2002. Controlled growth of ZnO
nanowires and their optical properties. Adv. Funct. Mater. 12: 323-331.
Zhang, S-B., Wei, S-H. & Zunger, A. 2001. Intrinsic
n-type versus p-type doping asymmetry and the defect physics of ZnO. Phys.
Rev. B. 63: 075205.
Zhang, Y., Manoj, K., Elias, K. & Goswami, Y. 2012. Synthesis, characterization, and
applications of ZnO nanowires. Journal of Nanomaterials 2012: 1-22.
Zhu, X-W., Li, Y-Q., Lu, Y., Liu, L-C. & Xia, Y-B. 2007.
Effects of Li or Li/Mg dopants on the orientation of ZnO nanorods prepared by
sol–gel method. Mater. Chem. Phys. 102: 75-79.
*Corresponding
author; email: javed.saggu@iiu.edu.pk
|