Sains Malaysiana 43(3)(2014):
321–329
Surface
Ozone Trend in Major Rice Growing Areas in Malaysia
(Tren Ozon Permukaan di Kawasan Penanaman Padi Utama di Malaysia)
MARZUKI ISMAIL1*, AZRIN
SUROTO1, NURUL
AIN
ISMAIL1& MOHD TALIB LATIF2
1Department of Engineering Science, Faculty of Science and Technology
Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Malaysia
2School of Environmental and Natural Resource Sciences, Faculty
of Science and Technology, Universiti
Kebangsaan Malaysia, 43600 Bangi,
Selangor Darul Ehsan,
Malaysia
Received: 19 October 2012/Accepted: 13 June 2013
ABSTRACT
Surface ozone or tropospheric ozone has been recognized as one of
the major factors that can give adverse impact on crops including
rice plants. Effects of ozone on rice plants could be seen in decreased
of biochemical activities and physiological performance which contribute
to yield reduction. In Malaysia, surface ozone is on the rise due
to increment anthropogenic sources i.e. urbanization, transportation
and also industrialization process. This condition is alarming due
to the fact that rice is the major staple food to the majority of
Malaysian population. In this study, exceedence
of ozone exposure above an hourly threshold concentration of 40
ppb (AOT40)
and ozone trends in four major rice growing areas in Malaysia were
assessed using time series analysis of ozone data recorded in each
area from January 2000 until December 2010 with a total of 132 readings.
The results showed a steady increase in exceedence
ozone of yearly AOT40
and statistical significant upward trend for ozone
concentrations in each rice growing area in Malaysia. This finding
was particularly alarming because ozone is able to inhibit production
of rice yields. Preventive actions need to be implemented as soon
as possible in order to alleviate ozone threat to our national food
security agenda.
Keywords: Accumulate ozone exposure above an hourly threshold
concentration of 40 ppb; rice growing area; surface ozone; trend analysis
ABSTRAK
Ozon permukaan atau ozon troposfera telah dikenal pasti sebagai salah satu faktor utama yang boleh memberi kesan buruk kepada tanaman termasuk padi. Kesan ozon pada tanaman padi boleh dilihat dalam penurunan aktiviti biokimia dan prestasi fisiologi yang menyumbang kepada pengurangan hasil. Di Malaysia, ozon permukaan semakin meningkat disebabkan peningkatan sumber antropogenik iaitu perbandaran, pengangkutan dan juga proses perindustrian. Keadaan ini adalah membimbangkan kerana berdasarkan fakta, beras adalah makanan ruji utama kepada majoriti penduduk Malaysia. Dalam kajian ini, kepekatan pendedahan ozon di atas kepekatan ambang jam 40 ppb (AOT40) dan tren ozon di empat kawasan utama tanaman padi di Malaysia telah dinilai menggunakan analisis siri masa data ozon yang direkodkan pada setiap kawasan dari Januari 2000 hingga Disember 2010 dengan sebanyak 132 bacaan. Keputusan menunjukkan peningkatan yang stabil dalam lebihan ozon daripada AOT40 tahunan dan tren menaik yang ketara secara statistik untuk kepekatan ozon di setiap kawasan penanaman padi di Malaysia. Penemuan ini amat membimbangkan kerana ozon dapat menghalang pengeluaran hasil padi. Tindakan pencegahan perlu dilaksanakan secepat mungkin untuk mengurangkan ancaman ozon terhadap agenda keselamatan makanan negara.
Kata kunci: Analisis tren; kawasan tanaman padi; pendedahan ozon yang terkumpul di atas kepekatan ambang 40 ppb per jam; ozon permukaan
REFERENCES
Afroz, R., Hassan, M.N. & Ibrahim, N.A.
2003. Review of air pollution and health
impacts in Malaysia. Journal of Environmental Research 92(2): 71-77.
Bencala, K.E. & Seinfield, J.H. 1979. On frequency distribution of air pollutant concentrations. Journal of Atmospheric Environment 10: 941-950.
Emberson, L., Ashmore,
M. & Murray, F. 2003. Air
pollution impacts on crops and forests. A global assessment. Air Pollution Reviews. Vol. 4. London: Imperial College Press.
EPA. 2011. http://www.epa.ie/whatwedo/monitoring/air/
standards/.
Fuhrer, J. & Booker, F. 2003. Ecological issues related to ozone:
Agricultural issues. Environment International 29: 141-154.
Gouveia, N. & Fletcher, T. 2000. Time series analysis of air pollution and mortality:
Effects by cause, age and sosioeconomics status. Journal
of Epidemiology and Community Health 54: 750-755.
Hong, W. 1997. A time series analysis of United States carrots exports to
Canada. MS Thesis. North Dakota State
University (unpublished).
Ishii, S., Marshall, F.M., Bell, J.N.B.
& Abdullah, A.M. 2004. Impact of ambient air pollution on locally grown rice cultivars
(Oryza sativa L.) in Malaysia. Water,
Air and Soil Pollution 154: 187-201.
Kyriakidis, P.C. & Journal, A.G. 2001. Stochastic modeling of
atmospheric pollution: A special time series framework, part II: Application to
monitoring monthly sulfate deposition over Europe. Atmopsheric Environment 35: 2339-2348.
Lee, C.K. 2002. Multiracial characteristics in air pollutant
concentration time series. Journal of Water Air Soil Pollution 135:
389-409.
Marzuki Ismail. 2011. Time-series analysis of ground level ozone in
Muda Irrigation Scheme Area (MADA),
Kedah. Journal of Sustainability Science and Management 6:
79-88.
Mills, G., Buse,
A., Gimeno, B., Bermejo, V., Holland, M., Emberson, L. & Pleijel, H.
2007. A synthesis of AOT40- based response
functions and critical levels of ozone for agricultural and crops. Atmospheric
Environment 1: 2630- 2643.
MOA.
2008. Agriculture Statistical Handbook. Kuala
Lumpur: Ministry of Agriculture and Agro-based Industry.
Naill, P.E. & Momani, M. 2009. Time series analysis model for rainfall data in Jordan: Case
study for using time series analysis. American Journal of Environmental
Sciences 5(5): 599-604.
Naja, M. & Akimoto, H. 2004. Contribution of regional
pollution and long-range transport to the Asia-Pacific region: Analysis of
long-term ozonesonde data over Japan. Journal of
Geophysical Research 109: D21306.
Roberts, S. 2003. Combining data from multiple monitors in
air pollution mortality time series studies. Atmospheric Environment 37(23):
3317-3322.
Salcedo, R.L.R., Alvim,
F.M., Alves, C. & Martins, F. 1999. Time series analysis of air pollution mortality time series
studies. Atmospheric Environment 33: 2361-2372.
Seinfeld, J.H. 1989. Urban
air-pollution-State of the science. Science 243: 745-752.
Touloumi, G., Atkinson, R. & Terte, A.L. 2004. Analysis
of health outcomes time series data in epidemiological studies. Environmetrics 15: 101-117.
World Health Organization. 2003. Health aspects of air pollution with particulate
matter, ozone, and nitrogen dioxide. EUR/03/5042688. Bonn,
Germany.
Yee, E. & Chen, R. 1997. A simple model for probability
density functions of concentration fluctuations in atmospheric plumes. Journal
of Atmospheric Environment 31: 991-1002.
*Corresponding
author; email: marzuki@umt.edu.my
|