Sains Malaysiana 43(3)(2014):
429–435
Characterization of Residue from EFB and Kenaf Core Fibres
in the Liquefaction Process
(Pencirian Bahan Baki Hasil daripada Proses Pencecairan EFB dan Serabut Teras Kenaf)
SARANI ZAKARIA*, RASIDI ROSLAN, UMAR ADLI AMRAN, CHIN-HUA CHIA
& SAIFUL BAHARI BAKARUDDIN
Pusat Pengajian Fizik Gunaan, Fakulti Sains dan Teknologi, Universiti
Kebangsaan Malaysia
43600 Bangi, Selangor, Malaysia
Received:
13 June 2012/Accepted: 6 July 2013
ABSTRACT
Different type of fibers which is EFB and KC were liquefied in
phenol with the presence of sulphuric acid as a catalyst. The liquefied residue
was characterized by using Fourier transform infrared (FTIR) to determine the
functional groups presents in both residues, X-ray diffraction (XRD) to determine the
degree of crystallinity in the residue, thermogravimetric analysis (TGA) to
analyze the thermal properties of the residue and scanning electron microscope
(SEM)
to investigate the structure and morphology of the residue. Phenol-to-EFB/KC ratio
shows great effect on the amount of residue in the liquefaction process. Peak
appearance can be observed in the FTIR analysis at 810 and 750 cm-1 which is attributed to
the para and meta benzene, respectively or to be
specific its associated to the p-alkyl phenol and m-alkyl phenol. In the XRD analysis,
CrI of lignocellulosic materials increased after liquefaction process.
Liquefaction process caused chemical penetration across the grain of the fiber,
thus the fiber bundles started to separate into individual fibers shown in the SEM micrograph
and the weights lost curve for both liquefied EFB and KC experienced three
region decompositions.
Keywords: EFB; KC; lignocellulosic; liquefaction; residue
ABSTRAK
Pencecairan bahan berbeza iaitu serabut tandan
kosong kelapa sawit (EFB) dan serabut teras kenaf (KC) telah dijalankan menggunakan
fenol sebagai agen pencecairan dengan kehadiran asid sulfurik sebagai
mangkin. Pencirian
baki pencecairan dilakukan dengan menggunakan transformasi Fourier
inframerah (FTIR)
untuk menentukan kumpulan berfungsi yang hadir, pembelauan Sinar-X
(XRD)
untuk menentukan darjah kehabluran, analisis termogravimetri (TGA) untuk menganalisis
sifat terma bahan baki) dan mikroskop elektron imbasan (SEM) untuk melihat struktur
dan morfologi baki pencecairan. Nisbah fenol terhadap STKKS/TK memberikan kesan
yang besar terhadap jumlah baki yang terhasil selepas proses pencecairan.
Kemunculan puncak boleh diperhatikan dalam analisis FTIR pada 810 dan 750 cm-1 disebabkan
oleh meta dan para benzena atau lebih spesifik berkaitan p-alkil
dan m-alkil fenol. Dalam analisis XRD, darjah kehabluran bahan lignoselulosa meningkat
selepas proses pencecairan. Proses pencecairan menyebabkan penembusan
bahan kimia ke seluruh butiran serabut lalu menyebabkan
berkas serabut terpisah
kepada serabut individu
seperti yang ditunjukkan pada mikrograf SEM. Manakala lengkung kehilangan
berat untuk kedua-dua baki pencecairan STKKS dan TK mengalami tiga tahap
penguraian dengan peningkatan suhu.
Kata kunci: Baki; EFB; KC;
lignoselulosa; pencecairan
REFERENCES
Adel, A.M., El–Wahab, Z.H.A., Ibrahim,
A.A. & Al–Shemy, M.T. 2010. Characterization of microcrystalline
cellulose prepared from lignocellulosic materials. Part I. Acid catalyzed
hydrolysis. Bioresource Technology 101(12): 4446-4455.
Ahmadzadeh, A., Zakaria, S.
& Rashid, R. 2009. Liquefaction of oil palm empty fruit bunch (EFB) into phenol and
characterization of phenolated EFB resin. Industrial Crops and
Products 30(1): 54-58.
Ali, I.S., Sapuan, S.M.,
Zainudin, E.S. & Abdan, K. 2009. Kenaf fibres as reinforced for polymeric composites: A review. International
Journal of Mechanical and Materials Engineering 4: 239-248.
Alma, M.H. 1996. Several acid-catalyzed
phenolated of wood and its application to molding material. PhD Thesis. Kyoto
University, Kyoto, Japan (unpublished).
Alma, M.H. & Basturk, M.A. 2006. Liquefaction of
grapevine cane (Vitis vinisera L.) waste and its application to phenol-formaldehyde type adhesive. Industrial
Crops and Products 24(2): 171-176.
Bakarudin, S.B., Zakaria, S., Chia, C.H. & Jani, S.M.
2012. Liquefied residue of kenaf core wood produced at different phenol-kenaf
ratio. Sains Malaysiana 41(2): 225-231.
Chai, L.L., Zakaria, S., Chia, C.H., Nabihah, S. &
Rashid, R. 2009. Physico-mechanical properties of PF
composite board from EFB fibres using liquefaction technique. Iranian
Polymer Journal 18(11): 917-923.
Chan, K.W. & Ismail, M. 2009. Supercritical carbon dioxide fluid extraction of Hibiscus
cannabinus L. seed oil: A potential solvent-free and
high antioxidative edible oil. Food Chemistry 114(3): 970-975.
Demirbas, A. 2000. Mechanism of liquefaction and pyrolysis
reactions of biomass. Energy Conversion and Management
41: 633-646.
Doh, G.H., Lee, S.Y., Kang, I.A. &
Kong, Y.T. 2005. Thermal behavior of liquefied wood
polymer composites (LWPC). Composite Structures 68(1): 103-108.
Effendi, A., Gerhauserm, H. &
Bridgwater, A.V. 2008. Production of
renewable phenolic resins by thermochemical conversion of biomass: A review. Renewable
and Sustainable Energy Reviews 12(8): 2092-2116.
El Mansouri, N.E., Yuan, Q. &
Huang, F. 2011. Study of chemical
modification of alkaline lignin by the glyoxalation reaction. BioResources 6(4): 4523-4536.
Hu, L., Pan, H., Zhou, Y. & Zhang, M. 2011. Methods to
improve Lignin’s reactivity as a phenol substitute and as replacement for other
phenolic compounds: A brief review. BioResources 6(3): 3515-3525.
Hui, P. 2011. Synthesis of polymers from organic solvent
liquefied biomass: A review. Renewable and Sustainable Energy Reviews 15(7):
3454-3463.
Juhaida, M.F., Paridah, M.T., Mohd. Hilmi,
M., Sarani, Z., Jalaluddin, H. & Mohamad Zaki, A.R. 2010. Liquefaction of kenaf (Hibiscus cannabinus L.) core for wood
laminating adhesive. Bioresource Technology 101(4): 1355-1360.
Kleinert, M. & Barth, T. 2008. Phenols from Lignin. Chemical
Engineering & Technology 31(5): 736-745.
Kunaver, M., Medved, S., Čuk, N.,
Jasiukaitytė, E., Poljanšek, I. & Strnad, T. 2010. Application of liquefied wood as a new particle
board adhesive system. Bioresource Technology 101(4): 1361-1368.
Pan, H., Shupe, T.F. & Hse, C.Y.
2007. Characterization of liquefied wood
residues from different liquefaction conditions. Journal of Applied Polymer
Science 105(6): 3740-3746.
Ridzuan, R., Stephen, S. & Mohd,
A.J. 2002. Properties of medium density
fiberboard from oil palm empty fruit bunch fiber. Journal of Oil Palm
Research 14(2): 34-40.
Sajab, M.S., Chia, C.H., Zakaria, S., Jani, S.M., Ayob,
M.K., Chee, K.L., Khiew, P.S. & Chiu, W.S. 2011. Citric acid modified kenaf
core fibres for removal of methylene blue from aqueous solution. Bioresource
Technology 102(15): 7237-7243.
Spinacé, M.A.S., Lambert, C.S., Fermoselli, K.K.G. & De
Paoli, M.A. 2009. Characterization of lignocellulosic curaua
fibres. Carbohydrate Polymers 77(1): 47-53.
Sulaiman, O., Salim, N., Hashim, R., Yusof, L.H.M., Razak,
W., Yunus, N.Y.M., Hashim, W.S. & Azmy, M.H. 2009. Evaluation on the
suitability of some adhesives for laminated veneer lumber from oil palm trunks. Materials & Design 30(9): 3572-3580.
Tomczak, F., Sydenstricker, T.H.D.
& Satyanarayana, K.G. 2007. Studies on lignocellulosic fibers of Brazil. Part II:
Morphology and properties of Brazilian coconut fibers. Composites Part A:
Applied Science and Manufacturing 38(7): 1710-1721.
*Corresponding
author; email: sarani@ukm.my
|