Sains Malaysiana 43(3)(2014): 451–457

 

Visco-Hyperelastic Model for Soft Rubber-like Materials

(Model Likat-Hiperkenyal untuk Bahan Lembut seperti Getah)

 

MOHD AFANDI P. MOHAMMED*

Williams, J.G. 1980. Stress Analysis of Polymers. London, UK: John Wiley.

Department of Process and Food Engineering, Universiti Putra Malaysia, 43400 Serdang,

Selangor, Malaysia

 

Received: 6 June 2013/Accepted: 8 July 2013

 

ABSTRACT

This paper investigates the application of visco-hyperelastic model to soft rubberlike material, that is gluten. Gluten is a major protein in wheat flour dough (a mixture of flour and water) which exists as long network fibers and undergo large deformation under uniaxial tension and compression. The visco-hyperelastic model is represented by a combination of the viscoelastic Prony series and the hyperelastic extended tube model. Calibration of the visco-hyperelastic model to gluten tests result suggests that gluten can be modelled as a finite viscoelastic material.

 

Keywords: Extended tube model; gluten; hyperelastic; viscoelastic

 

ABSTRAK

 

Kertas ini mengkaji aplikasi model likat-hiperkenyal kepada bahan lembut seperti getah, iaitu gluten. Gluten ialah protein utama di dalam doh gandum (campuran tepung gandum dan air) yang wujud sebagai rangkaian gentian panjang dan melalui pemanjangan oleh tegangan dan mampatan. Model likat-hiperkenyal tersebut diwakili oleh kombinasi likat kenyal siri Prony dan model hiperkenyal lanjutan tiub. Kalibrasi model likat-hiperkenyal kepada data kajian daripada bahan gluten mencadangkan bahawa gluten boleh dimodelkan sebagai bahan likat kenyal terhingga.

 

Kata kunci: Gluten; hiperkenyal; likat kenyal; model lanjutan tiub

REFERENCES

Abaqus's User Manual ver. 6.8. 2009. Hibbitt Karlsson and Sorensen, Providence, USA.

Abaqus's User Manual ver. 6.9. 2010. Hibbitt Karlsson and Sorensen, Providence, USA.

Arruda, E.M. & Boyce, M.C. 1993. A three-dimensional constitutive model for the large stretch behaviour of rubber elastic materials. J. Mech Phys. Solis. 41(2): 389-412.

Ciambella, J., Destrade, M. & Ogden, R.W. 2009. On the Abaqus FEA model of finite viscoelasticity. Rubber Chem. Tech. 82(24): 184-193.

Charalambides, M.N., Wanigasooria, L., Williams, J.G., Goh, S.M. & Chakrabarti, S. 2006. Large deformation extensional rheology of bread dough. Rheol. Acta 46: 239-248.

Doi, M. & Edwards, S.F. 1986. The Theory of Polymer Dynamics. Oxford, UK: Oxford University Press.

Edwards, S.F. & Vilgis, T. 1986. The effect of entanglements in rubber elasticity. Polymer 27: 483-492.

Edwards, N.M., Mulvaney, S.J., Scanlon, M.G. & Dexter, J.E. 2003. Role of gluten and its components in determining durum semolina dough viscoelastic properties. Cereal Chem. 6: 755-763.

Goh, S.M., Charalambides, M.N. & Williams, J.G. 2004. Determination of the constitutive constants of non-linear viscoelastic materials. Mech. Time-Depend. Mate. 8: 255-268.

Holzapfel, G.A. 2000. Nonlinear Solid Mechanics: A Continuum Approach for Engineering. UK: John Wiley and Sons.

Janmey, P.A. & Schiwa, M. 2008. Rheology. Current Biology 18(15): R639-R641.

Kaliske, M. & Rothert, H. 1997. Formulation and implementation of three-dimensional viscoelasticity at small and finite strains. Comput. Mech. 19: 228-239.

Kaliske, M., Nasdala, L. & Rothert, H. 2001. On damage modelling for elastic and viscoelastic materials at large strain. Computers Struct. 79: 2133-2141.

Kilian, H.G. 1982. Thermo-elasticity of network. Coll. Polym. Sci. 260: 895-910.

Kluppel, M. & Schramm, J. 2000. A generalized tube model of rubber elasticity and stress softening of filler reinforced elastomer systems. Macromol. Theory Simul. 9: 742–754.

Kluppel, M., Menge, H., Schimdt, H., Schneider, H. & Schuster, R.H. 2001. Influence of preparation conditions on network parameters of sulfur-cured natural rubber. Macromolecules 34: 8107-8116.

Kontogiorgos, V. & Goff, H.D. 2006. Calorimetric and microstructural investigation of frozen hydrated gluten. Food Biophy. 1: 202-215.

McLeish, T.C.B. & Larson, R.G. 1998. Molecular constitutive equations for a class of branched polymers: The Pom-Pom model. J. Rheol. 42(1): 81-110.

Mohammed, M.A.P., Tarleton, E., Charalambides, M.N. & Williams, J.G. 2011. A composite model for wheat flour dough under large deformation. Procedia Food Sci. 1: 492- 498.

Mohammed, M.A.P., Tarleton, E., Charalambides, M.N. & Williams, J.G. 2013. Mechanical characterization and micromechanical modeling of bread dough. J. Rheol. 57(1): 249-272.

Ng, T.S.K. & McKinley, G.H. 2008. Power law gels at finite strains: The nonlinear rheology of gluten gels. J. Rheol. 52(2): 419-449.

Ng, T.S.K., McKinley, G.H. & Ewoldt, R.H. 2011. Large amplitude oscillatory shear flow of gluten dough: A model power-law gel. J. Rheol. 55(3): 627-654.

Singh, H. & MacRitchie, F. 2001. Application of polymer science to properties of gluten. J. Cereal Sci. 33: 231-243.

Tanner, R.I., Dai, S.C. & Qi, F. 2008. Bread dough rheology and recoil: 1. Rheology. J. Non-Newton. Fluid Mech. 148: 33-40.

Treloar, L.R.G. 1975. The Physics of Rubber Elasticity. Oxford, UK: Clarendon Press.

Uthayakumaran, S., Newberry, M., Phan-Thien, N. & Tanner, R. 2002. Small and large strain rheology of wheat gluten. Rheol. Acta 41: 162-172.

Vilgis, T.A., Heinrich, G. & Kluppel, M. 2009. Reinforcement of Polymer Nano-composite: Theory, Experiments and Applications. Cambridge, UK: Cambridge University Press.

Ward, I.M. 1971. Mechanical Properties of Solid Polymers. 2nd ed. UK: Wiley-Interscience Publication.

 

*Corresponding author; email: afandi@eng.upm.edu.my

 

 

previous