Sains Malaysiana 43(3)(2014): 451–457
Visco-Hyperelastic
Model for Soft Rubber-like Materials
(Model Likat-Hiperkenyal untuk Bahan Lembut seperti Getah)
MOHD AFANDI P. MOHAMMED*
Williams, J.G. 1980. Stress Analysis of Polymers. London,
UK: John Wiley.
Department of Process and Food Engineering, Universiti Putra
Malaysia, 43400 Serdang,
Selangor, Malaysia
Received: 6 June 2013/Accepted: 8 July 2013
ABSTRACT
This paper investigates the application of visco-hyperelastic model
to soft rubberlike material, that is gluten. Gluten is a major protein
in wheat flour dough (a mixture of flour and water) which exists
as long network fibers and undergo large deformation under uniaxial
tension and compression. The visco-hyperelastic model is represented
by a combination of the viscoelastic Prony series and the hyperelastic
extended tube model. Calibration of the visco-hyperelastic model
to gluten tests result suggests that gluten can be modelled as a
finite viscoelastic material.
Keywords: Extended tube model; gluten; hyperelastic; viscoelastic
ABSTRAK
Kertas ini mengkaji aplikasi model likat-hiperkenyal kepada bahan
lembut seperti getah, iaitu gluten. Gluten ialah protein utama di dalam doh
gandum (campuran tepung gandum dan air) yang wujud sebagai rangkaian gentian
panjang dan melalui pemanjangan oleh tegangan dan mampatan. Model
likat-hiperkenyal tersebut diwakili oleh kombinasi likat kenyal siri Prony dan
model hiperkenyal lanjutan tiub. Kalibrasi model likat-hiperkenyal kepada data
kajian daripada bahan gluten mencadangkan bahawa gluten boleh dimodelkan
sebagai bahan likat kenyal terhingga.
Kata kunci: Gluten;
hiperkenyal; likat kenyal; model lanjutan tiub
REFERENCES
Abaqus's User Manual ver. 6.8. 2009. Hibbitt Karlsson and Sorensen,
Providence, USA.
Abaqus's User Manual ver. 6.9. 2010. Hibbitt Karlsson and Sorensen,
Providence, USA.
Arruda, E.M. & Boyce, M.C. 1993. A three-dimensional
constitutive model for the large stretch behaviour of rubber elastic materials. J. Mech Phys. Solis. 41(2): 389-412.
Ciambella, J., Destrade, M. & Ogden, R.W. 2009. On the
Abaqus FEA model of finite viscoelasticity. Rubber Chem. Tech. 82(24):
184-193.
Charalambides, M.N., Wanigasooria, L., Williams, J.G., Goh,
S.M. & Chakrabarti, S. 2006. Large deformation extensional rheology of
bread dough. Rheol. Acta 46: 239-248.
Doi, M. & Edwards, S.F. 1986. The Theory of Polymer
Dynamics. Oxford, UK: Oxford University Press.
Edwards, S.F. & Vilgis, T. 1986. The effect of
entanglements in rubber elasticity. Polymer 27: 483-492.
Edwards, N.M., Mulvaney, S.J., Scanlon, M.G. & Dexter,
J.E. 2003. Role of gluten and its components in determining durum semolina dough viscoelastic
properties. Cereal Chem. 6: 755-763.
Goh, S.M., Charalambides, M.N. & Williams, J.G. 2004.
Determination of the constitutive constants of non-linear viscoelastic
materials. Mech. Time-Depend. Mate. 8: 255-268.
Holzapfel, G.A. 2000. Nonlinear Solid Mechanics: A
Continuum Approach for Engineering. UK: John Wiley and Sons.
Janmey, P.A. & Schiwa, M. 2008. Rheology. Current
Biology 18(15): R639-R641.
Kaliske, M. & Rothert, H. 1997. Formulation and
implementation of three-dimensional viscoelasticity at small and finite
strains. Comput. Mech. 19: 228-239.
Kaliske, M., Nasdala, L. & Rothert, H. 2001. On damage
modelling for elastic and viscoelastic materials at large strain. Computers
Struct. 79: 2133-2141.
Kilian, H.G. 1982. Thermo-elasticity of network. Coll.
Polym. Sci. 260: 895-910.
Kluppel, M. & Schramm, J. 2000. A generalized tube model
of rubber elasticity and stress softening of filler reinforced elastomer
systems. Macromol. Theory Simul. 9: 742–754.
Kluppel, M., Menge, H., Schimdt, H., Schneider, H. &
Schuster, R.H. 2001. Influence of preparation conditions on network parameters
of sulfur-cured natural rubber. Macromolecules 34: 8107-8116.
Kontogiorgos, V. & Goff, H.D. 2006. Calorimetric and
microstructural investigation of frozen hydrated gluten. Food Biophy. 1:
202-215.
McLeish, T.C.B. & Larson, R.G. 1998. Molecular constitutive
equations for a class of branched polymers: The Pom-Pom model. J. Rheol. 42(1):
81-110.
Mohammed, M.A.P., Tarleton, E., Charalambides, M.N. &
Williams, J.G. 2011. A composite model for wheat flour dough under large
deformation. Procedia Food Sci. 1: 492- 498.
Mohammed, M.A.P., Tarleton, E., Charalambides, M.N. &
Williams, J.G. 2013. Mechanical characterization and micromechanical modeling
of bread dough. J. Rheol. 57(1): 249-272.
Ng, T.S.K. & McKinley, G.H. 2008. Power law gels at
finite strains: The nonlinear rheology of gluten gels. J. Rheol. 52(2):
419-449.
Ng, T.S.K., McKinley, G.H. & Ewoldt, R.H. 2011. Large
amplitude oscillatory shear flow of gluten dough: A model power-law gel. J.
Rheol. 55(3): 627-654.
Singh, H. & MacRitchie, F. 2001. Application of polymer
science to properties of gluten. J. Cereal Sci. 33: 231-243.
Tanner, R.I., Dai, S.C. & Qi, F. 2008. Bread dough
rheology and recoil: 1. Rheology. J. Non-Newton. Fluid Mech. 148: 33-40.
Treloar, L.R.G. 1975. The Physics of Rubber Elasticity.
Oxford, UK: Clarendon Press.
Uthayakumaran, S., Newberry, M., Phan-Thien, N. &
Tanner, R. 2002. Small and large strain rheology of wheat gluten. Rheol.
Acta 41: 162-172.
Vilgis, T.A., Heinrich, G. & Kluppel, M. 2009. Reinforcement
of Polymer Nano-composite: Theory, Experiments and Applications. Cambridge,
UK: Cambridge University Press.
Ward, I.M. 1971. Mechanical Properties of Solid Polymers. 2nd ed. UK: Wiley-Interscience Publication.
*Corresponding
author; email: afandi@eng.upm.edu.my
|