Sains Malaysiana 43(3)(2014): 475–481

 

Suatu Kajian Perintis Menggunakan Pendekatan Kalut bagi Pengesanan Sifat dan

Peramalan Siri Masa Kepekatan PM

(A Pilot Study using Chaotic Approach to Determine Characteristics and Forecasting of PM10 Concentration Time Series)

 

 

NOR ZILA ABD HAMID1* & MOHD SALMI MD NOORANI2

1Jabatan Matematik, Fakulti Sains dan Matematik, Universiti Pendidikan Sultan Idris

35900 Tanjung Malim, Perak, Malaysia

 

2Pusat Pengajian Sains Matematik, Fakulti Sains dan Teknologi

43600 Bangi, Selangor, Malaysia

 

Received: 16 May 2013/Accepted: 15 July 2013

 

ABSTRAK

Peramalan kepekatan PM10 adalah penting kerana menyedut udara mengandungi PM10 boleh membawa kepada pelbagai penyakit kronik seperti kanser dan bronkitis. Kajian ini merupakan kajian perintis menggunakan pendekatan kalut bagi meramal PM10 di Malaysia. Data yang dikaji adalah siri masa PM10 mengikut jam yang dicerap di stesen penanda aras yang terletak dalam daerah Jerantut di negeri Pahang. Pendekatan kalut mempunyai dua langkah iaitu pembinaan semula ruang fasa dan proses peramalan. Melalui langkah 1, ruang fasa pelbagai-matra dibina menggunakan parameter masa tunda τ = 7 dan matra pembenaman m = 4 yang masing-masing diperoleh daripada kaedah maklumat purata bersama dan kaedah Cao. Hasil daripada gambarajah ruang fasa dan juga plot parameter kaedah Cao mempamerkan bahawa data bersifat kalut. Melalui langkah 2, peramalan satu jam ke hadapan selama sebulan siri masa PM10 dijalankan menggunakan kaedah penghampiran setempat. Nilai pekali kolerasi antara data ramalan dan data sebenar hanyalah 0.5692. Namun, graf perbandingan menunjukkan bahawa data ramalan adalah hampir dengan data sebenar dengan nilai ralat punca min kuasa dua peramalan adalah 7.6814. Ini menunjukkan kesesuaian penggunaan kaedah penghampiran setempat dalam meramal siri masa PM10 dan ia merupakan petanda positif bahawa pendekatan kalut ini boleh diguna pakai ke atas siri masa bahan pencemar di Malaysia.

 

Kata kunci: Kaedah penghampiran setempat; Malaysia; pendekatan kalut; peramalan; PM10

 

ABSTRACT

Forecasting of PM10 concentration is important as breathing air containing PM10 can lead to chronic diseases such as cancer and bronchitis. This study is a pilot study using chaotic approach to forecast PM10 in Malaysia. Studied data is a time series of observed hourly PM10 at benchmark station located in the district of Jerantut in Pahang state. Chaotic approach has two steps, namely the phase space reconstruction and the forecasting process. Through step 1, multi-dimensional phase space is reconstructed using the parameters of the delay time τ = 7 and embedding dimension m = 4, respectively, derived from the average mutual information and Cao method. The results from the phase space diagram and parameter plot of Cao method demonstrates that the data are chaotic. Through step 2, 1 h ahead forecasting for a month PM10 time series is carried out using the local approximation method. Correlation coefficient value between the actual and forecasted data is only 0.5692. However, comparison graphs show that forecasted data are close to the actual data with root mean square error value 7.6814. This demonstrates the suitability of the local approximation method to forecast the time series of PM10 and it's a positive sign that this chaotic approach is applicable to the time series of pollutants in Malaysia.

 

Keywords: Chaotic approach; forecast; local approximation method; Malaysia; PM10

REFERENCES

Abarbanel, H.D.I. 1996. Analysis of Observed Chaotic Data. New York: Springer-Verlag, Inc.

Afroz, R., Hassan, M.N. & Ibrahim, N.A. 2003. Review of air pollution and health impacts in Malaysia. Environmental Research 92(2): 71-77.

Awang, M., Jaafar, A.B., Abdullah, A.M., Ismail, M., Hassan, M.N., Abdullah, R., Johan, S. & Noor, H. 2000. Air quality in Malaysia: Impacts, management issues and future challenges. Respirology 5: 183-196.

Cao, L. 1997. Practical method for determining the minimum embedding dimension of a scalar time series. Physica D 110: 43-50.

Chelani, A.B. & Devotta, S. 2006. Nonlinear analysis and prediction of coarse particulate matter concentration in ambient air. Journal Air and Waste Management Association 56: 78-84.

Chelani, A.B. & Devotta, S. 2007. Prediction of ambient carbon monoxide concentration using nonlinear time series analysis technique. Transportation Research Part D 12: 596-600.

Chelani, A.B. 2010. Nonlinear dynamical analysis of ground level ozone concentrations at different temporal scales. Atmospheric Environment 44: 4318-4324.

Chen, J., Islam, S. & Biswas, P. 1998. Nonlinear dynamics of hourly O3 concentration: Nonparametric short term prediction. Atmospheric Environment 32 (11): 1839-1848.

Dominick, D., Latif, M.T., Juahir, H., Aris, A.Z. & Zain, S.M. 2012. An assessment of influence of meteorological factors on PM10 and NO2 at selected stations in Malaysia. Sustainable Environment Research 22(5): 305-315.

Farmer, J.D. & Sidorowich, J.J. 1987. Predicting chaotic time series. Physical Review Letters 59(8): 845-848.

Gueyan, D. & Leroux, J. 2008. Forecasting chaotic systems: The role of Lyapunov Exponents. Chaos, Solitons and Fractal 41(5): 2401-2404.

Hamid, N.Z.A. & Noorani, M.S.M. 2013. Modeling of prediction system: An application of the nearest neighbor approach to chaotic data. Applied Mathematics and Computational Intelligence 2(1): 137-148.

Jabatan Alam Sekitar Malaysia, 2013. www.doe.gov.my. Diakses pada 1 April 2013.

Juneng, L., Latif, M.T. & Tangang, F. 2011. Factors influencing the variations of PM10 aerosol dust in Klang Valley, Malaysia during the summer. Atmospheric Environment 45: 4370-4378.

Khatibi, R., Sivakumar, B., Ghorbani, M.A., Kisi, O., Kocak, K. & Zadeh, D.F. 2012. Investigating chaos in river stage and discharge time series. Journal of Hydrology 414-415: 108-117.

Khokhlov, V.N., Glushkov, A.V., Loboda, N.S. & Bunyakova, Y.Y. 2008. Short-range predict of atmospheric pollutants using nonlinear prediction method. Atmospheric Environment 42: 7284-7292.

Kocak, K., Saylan, L. & Sen, O. 2000. Nonlinear time series prediction of O3 concentration in Istanbul. Atmospheric Environment 34: 1267-1271.

Martuzzi, M., Mitis, F., Iavarone, I. & Serinelli, M. 2006. Health Impact of PM10 and Ozone in 13 Italian Cities. Denmark: World Health Organization Regional Office for Europe.

Meng, Q. & Peng, Y. 2007. A new local linear prediction model for chaotic time series. Physics Letters A 370: 465-470.

Radhakrishnan, P. & Dinesh, S. 2006. An alternative approach to characterize time series data: Case study on Malaysian rainfall data. Chaos, Solitons and Fractals 27: 511-518.

Regonda, S.K., Rajagopalan, B., Lali, U., Clark, M. & Moon, Y.I. 2005. Local polynomial method for ensemble predict of time series. Nonlinear Process in Geophysics 12: 397-406.

Ruhm, K.H. 2008. Deterministic, Nondeterministic Signals. Institute for Dynamic Systems and Control, Zurich, Switzerland.

Sivakumar, B., Liong, S., Liaw, C. & Phoon, K. 1999. Singapore rainfall behavior: Chaotic? Journal of Hydrologic Engineering January 1999: 38-48.

Sivakumar, B. 2002. A phase-space reconstruction approach to prediction of suspended sediment concentration in rivers. Journal of Hydrology 258: 149-162.

Ul-Saufie, A.Z., Yahaya, A.S., Ramli, N.A. & Hamid, H.A. 2011. Comparison between multiple linear regression and feed forward back propagation neural network models for predicting PM10 concentration level based on gaseous and meteorological parameters. International Journal of Applied Science and Technology 1(4): 42-49.

Ul-Saufie, A.Z., Yahaya, A.S., Ramli, N.A. & Hamid, H.A. 2012. Performance of multiple linear regression model for long-term PM10 concentration prediction based on gaseous and meteorological parameters. Journal of Applied Sciences 12(14): 1488-1494.

Velickov, S. 2004. Nonlinear Dynamics and Chaos. Taylor & Francis Group plc., London.

 

*Corresponding author; email: nor_zila@yahoo.com

 

 

previous