Sains Malaysiana 43(3)(2014): 491–496

 

Flow and Heat Transfer of a Power-Law Fluid over a Permeable Shrinking Sheet

(Aliran dan Pemindahan Haba bagi Bendalir Hukum-Kuasa di Atas Lembaran Telap yang Mengecut)

 

NOR AZIZAH YACOB1& ANUAR ISHAK2*

 

1Faculty of Computer and Mathematical Sciences, Universiti Teknologi MARA Pahang

26400 Bandar Tun Razak Jengka, Pahang, Malaysia

 

2School of Mathematical Sciences, Faculty of Science and Technology

Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

 

Received: 24 August 2012/Accepted: 8 June 2013

 

ABSTRACT

The steady, two-dimensional laminar flow of a power-law fluid over a permeable shrinking sheet of constant surface temperature is investigated. The governing partial differential equations were transformed into a system of nonlinear ordinary differential equations using a similarity transformation, before being solved numerically by the Runge-Kutta-Fehlberg method with shooting technique. The results are presented graphically and the effects of the power-law index n, suction parameter fw and Prandtl number Pr were discussed. It was found that stronger suction is necessary for the solution to exist for a pseudoplastic fluid (n<1) compared to a dilatant fluid (n>1).

 

Keywords: Boundary layer; heat transfer; power-law fluid; shrinking sheet

 

ABSTRAK

Aliran lamina mantap dua matra bendalir hukum-kuasa di atas lembaran telap dengan suhu permukaan malar yang mengecut dikaji. Persamaan pembezaan separa dijelmakan menjadi satu sistem persamaan pembezaan biasa tak linear menggunakan penjelmaan keserupaan, sebelum diselesaikan secara berangka menggunakan kaedah Runge-Kutta-Fehlberg dengan teknik tembakan. Keputusan dibentangkan secara grafik dan kesan indeks hukum-kuasa n, parameter sedutan fw dan nombor Prandtl Pr dibincangkan. Didapati bahawa sedutan yang kuat adalah perlu supaya penyelesaian wujud bagi bendalir pseudoplastik (n<1) berbanding dengan bendalir dilatan (n>1).

 

Kata kunci: Bendalir hukum-kuasa; lapisan sempadan; lembaran mengecut; pemindahan haba

REFERENCES

Acrivos, A., Shah, M.J. & Petersen, E.E. 1960. Momentum and heat transfer in laminar boundary-layer flows of non- Newtonian fluids past external surfaces. AIChE Journal 6: 312-317.

Andersson, H.I. & Irgens, F. 1990. Film flow of power-law fluids. In Encyclopedia of Fluid Mechanics, edited by Cheremisinoff, N.P. Houston: Gulf Publishing. pp.617-648.

Arifin, N.M., Nazar, R. & Pop, I. 2010. Viscous flow due to a permeable stretching/shrinking sheet in a nanofluid. Sains Malaysiana40: 1359-1367.

Bachok, N., Ishak, A. & Pop, I. 2010. Unsteady three-dimensional boundary layer flow due to a permeable shrinking sheet. Applied Mathematics and Mechanics - English Edition 31: 1421-1428.

Bailey, P.B., Shampine, L.F. & Waltman, P.E. 1968. Nonlinear Two Point Boundary Value Problems. New York: Academic Press.

Bhattacharyya, K. & Layek, G.C. 2011. Effects of suction/ blowing on steady boundary layer stagnation-point flow and heat transfer towards a shrinking sheet with thermal radiation. International Journal of Heat and Mass Transfer 54: 302-307.

Bhattacharyya, K., Mukhopadhyay, S. & Layek, G.C. 2011. Slip effects on boundary layer stagnation-point flow and heat  transfer towards a shrinking sheet. International Journal of Heat and Mass Transfer 54: 308-313.

Chen, C.H. 2008. Effects of magnetic field and suction/injection on convection heat transfer of non-Newtonian power-law fluids past a power-law stretched sheet with surface heat flux. International Journal of Thermal Sciences 47: 954-961.

Cheng, P-J. & Liu, K-C. 2009. Hydromagnetic instability of a power-law liquid film flowing down a vertical cylinder using numerical approximation approach techniques. Applied Mathematical Modelling 33: 1904-1914.

Cortell, R. 2005. A note on magnetohydrodynamic flow of a power-law fluid over a stretching sheet. Applied Mathematics and Computation 168: 557-566.

Fang, T. 2008. Boundary layer flow over a shrinking sheet with power-law velocity. International Journal of Heat and Mass Transfer 51: 5838-5843.

Fang, T. & Zhang, J. 2010. Thermal boundary layers over a shrinking sheet: An analytical solution. Acta Mechanica 209: 325-343.

Fang, T. & Zhang, J. 2009. Closed-form exact solutions of MHD viscous flow over a shrinking sheet. Communications in Nonlinear Science and Numerical Simulation 14: 2853-2857.

Fang, T., Yao, S., Zhang, J. & Aziz, A. 2010. Viscous flow over a shrinking sheet with a second order slip flow model. Communications in Nonlinear Science and Numerical Simulation 15: 1831-1842

Fang, T., Liang, W. & Lee, C.F.F. 2008. A new solution branch for the Blasius equation - A shrinking sheet problem. Computer & Mathematics with Applications 56: 3088-3095.

Hassanien, I.A. 1996. Flow and heat transfer on a continuous flat surface moving in a parallel free stream of power-law fluid. Applied Mathematical Modelling 20: 779-784.

Hayat, T., Abbas, Z. & Sajid, M. 2007. On the analytic solution of magnetohydrodynamic flow of a second grade fluid over a shrinking sheet. Journal of Applied Mechanics 74: 1165-1171.

Howell, T.G., Jeng, D.R. & De Witt, K.J. 1997. Momentum and heat transfer on a continuous moving surface in a power law fluid. International Journal of Heat and Mass Transfer 40: 1853-1861.

Ishak, A., Lok, Y.Y. & Pop, I. 2010. Stagnation-point flow over a shrinking sheet in a micropolar fluid. Chemical Engineering Communications 197: 1417-1427.

Mahapatra, T.R., Nandy, S.K. & Gupta, A.S. 2009. Analytical solution of magnetohydrodynamic stagnation-point flow of a power-law fluid towards a stretching surface. Applied Mathematics and Computation 215: 1696-1710.

Miklavčič, M. & Wang, C.Y. 2006. Viscous flow due to a shrinking sheet. Quarterly of Applied Mathematics 64: 283-290.

Postelnicu, A. & Pop, I. 2011. Falkner-Skan boundary layer flow of a power-law fluid past a stretching wedge. Applied Mathematics and Computation 217: 4359-4368.

Prasad, K.V., Datti, P.S. & Vajravelu, K. 2010. Hydromagnetic flow and heat transfer of a non-Newtonian power law fluid over a vertical stretching sheet. International Journal of Heat and Mass Transfer 53: 879-888.

Schowalter, W.R. 1960. The application of boundary-layer theory to power-law pseudoplastic fluids: Similar solutions. AIChE Journal 6: 24-28.

Wang, T.Y. 1994. Similarity solution of laminar mixed convection heat transfer from a horizontal plate to power-law fluid. Mingchi Institute of Technology Journal 26: 25-32.

Wilkinson, W.L. 1960. Non-Newtonian Fluids. London: Pergamon Press.

Xu, H. & Liao, S.J. 2009. Laminar flow and heat transfer in the boundary-layer of non-Newtonian fluids over a stretching flat sheet. Computer & Mathematics with Applications 57: 1425-1431.

Yao, S., Fang, T. & Zhong, Y. 2011. Heat transfer of a generalized stretching/shrinking wall problem with convective boundary conditions. Communications in Nonlinear Science and Numerical Simulation 16: 752-760.

Zheng, L., Ting, L. & Zhang, X. 2008. Boundary layer flow on a moving surface in otherwise quiescent pseudo-plastic non- Newtonian fluids. Metallurgy 15: 241-244.

 

 

*Corresponding author; email: anuar_mi@ukm.my

 

 

previous