Sains Malaysiana 43(3)(2014): 491–496
Flow
and Heat Transfer of a Power-Law Fluid over a Permeable Shrinking Sheet
(Aliran dan Pemindahan Haba bagi Bendalir Hukum-Kuasa di Atas Lembaran Telap yang Mengecut)
NOR AZIZAH YACOB1& ANUAR
ISHAK2*
1Faculty of Computer and Mathematical Sciences, Universiti Teknologi MARA Pahang
26400 Bandar Tun Razak Jengka, Pahang, Malaysia
2School of Mathematical Sciences, Faculty of Science and Technology
Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
Received: 24 August 2012/Accepted: 8 June 2013
ABSTRACT
The steady, two-dimensional laminar flow of a power-law fluid over
a permeable shrinking sheet of constant surface temperature is investigated.
The governing partial differential equations were transformed into a system of
nonlinear ordinary differential equations using a similarity transformation,
before being solved numerically by the Runge-Kutta-Fehlberg method with shooting technique. The results are presented graphically and the
effects of the power-law index n, suction parameter fw and Prandtl number Pr were
discussed. It was found that stronger suction is necessary for the solution to
exist for a pseudoplastic fluid (n<1) compared to a dilatant fluid (n>1).
Keywords: Boundary layer; heat transfer; power-law fluid;
shrinking sheet
ABSTRAK
Aliran lamina mantap dua matra bendalir hukum-kuasa di atas lembaran telap dengan suhu permukaan malar yang mengecut dikaji. Persamaan pembezaan separa dijelmakan menjadi satu sistem persamaan pembezaan biasa tak linear menggunakan penjelmaan keserupaan, sebelum diselesaikan secara berangka menggunakan kaedah Runge-Kutta-Fehlberg dengan teknik tembakan. Keputusan dibentangkan secara grafik dan kesan indeks hukum-kuasa n,
parameter sedutan fw dan nombor Prandtl Pr dibincangkan. Didapati bahawa sedutan yang kuat adalah perlu supaya penyelesaian wujud bagi bendalir pseudoplastik (n<1) berbanding dengan bendalir dilatan (n>1).
Kata kunci: Bendalir hukum-kuasa; lapisan sempadan; lembaran mengecut; pemindahan haba
REFERENCES
Acrivos, A., Shah, M.J. & Petersen, E.E. 1960. Momentum
and heat transfer in laminar boundary-layer flows of non- Newtonian
fluids past external surfaces. AIChE
Journal 6: 312-317.
Andersson, H.I. & Irgens, F. 1990. Film flow of power-law fluids. In Encyclopedia
of Fluid Mechanics, edited by Cheremisinoff, N.P.
Houston: Gulf Publishing. pp.617-648.
Arifin, N.M., Nazar, R.
& Pop, I. 2010. Viscous flow due to a permeable
stretching/shrinking sheet in a nanofluid. Sains Malaysiana40:
1359-1367.
Bachok, N., Ishak,
A. & Pop, I. 2010. Unsteady
three-dimensional boundary layer flow due to a permeable shrinking sheet. Applied
Mathematics and Mechanics - English Edition 31: 1421-1428.
Bailey, P.B., Shampine, L.F. & Waltman,
P.E. 1968. Nonlinear
Two Point Boundary Value Problems. New York: Academic Press.
Bhattacharyya, K. & Layek,
G.C. 2011. Effects of suction/ blowing on steady boundary layer
stagnation-point flow and heat transfer towards a shrinking sheet with thermal
radiation. International Journal of Heat and Mass Transfer 54: 302-307.
Bhattacharyya, K., Mukhopadhyay,
S. & Layek, G.C. 2011. Slip effects on boundary
layer stagnation-point flow and heat transfer towards a shrinking sheet. International
Journal of Heat and Mass Transfer 54: 308-313.
Chen, C.H. 2008. Effects of magnetic field and
suction/injection on convection heat transfer of non-Newtonian power-law fluids
past a power-law stretched sheet with surface heat flux. International
Journal of Thermal Sciences 47: 954-961.
Cheng, P-J. & Liu, K-C. 2009. Hydromagnetic instability of a power-law liquid film flowing down a vertical cylinder using
numerical approximation approach techniques. Applied
Mathematical Modelling 33: 1904-1914.
Cortell, R. 2005. A note on magnetohydrodynamic flow of a power-law fluid over a stretching sheet. Applied
Mathematics and Computation 168: 557-566.
Fang, T. 2008. Boundary layer flow over a
shrinking sheet with power-law velocity. International Journal of
Heat and Mass Transfer 51: 5838-5843.
Fang, T. & Zhang, J. 2010. Thermal boundary layers over
a shrinking sheet: An analytical solution. Acta
Mechanica 209: 325-343.
Fang, T. & Zhang, J. 2009. Closed-form exact solutions
of MHD viscous flow over a shrinking sheet. Communications in
Nonlinear Science and Numerical Simulation 14: 2853-2857.
Fang, T., Yao, S., Zhang, J. & Aziz, A. 2010.
Viscous flow over a shrinking sheet with a second order slip flow
model. Communications in Nonlinear Science and Numerical
Simulation 15: 1831-1842
Fang, T., Liang, W. & Lee, C.F.F.
2008. A new solution branch
for the Blasius equation - A shrinking
sheet problem. Computer & Mathematics with Applications
56: 3088-3095.
Hassanien, I.A. 1996. Flow and heat transfer on a continuous flat
surface moving in a parallel free stream of power-law fluid. Applied
Mathematical Modelling 20: 779-784.
Hayat, T., Abbas, Z. & Sajid, M. 2007. On the analytic solution of magnetohydrodynamic flow of a second grade fluid over a shrinking sheet. Journal
of Applied Mechanics 74: 1165-1171.
Howell, T.G., Jeng, D.R. & De
Witt, K.J. 1997. Momentum and heat transfer on a continuous moving surface in a
power law fluid. International Journal of Heat and Mass Transfer 40:
1853-1861.
Ishak, A., Lok,
Y.Y. & Pop, I. 2010. Stagnation-point
flow over a shrinking sheet in a micropolar fluid. Chemical Engineering Communications 197: 1417-1427.
Mahapatra, T.R., Nandy, S.K. & Gupta,
A.S. 2009. Analytical solution of magnetohydrodynamic stagnation-point flow of a power-law fluid towards a stretching surface. Applied Mathematics and Computation 215: 1696-1710.
Miklavčič, M. & Wang, C.Y. 2006. Viscous flow
due to a shrinking sheet. Quarterly of Applied Mathematics 64:
283-290.
Postelnicu, A. & Pop, I. 2011. Falkner-Skan boundary layer flow of a power-law fluid past a
stretching wedge. Applied Mathematics and Computation 217:
4359-4368.
Prasad, K.V., Datti, P.S. & Vajravelu, K. 2010. Hydromagnetic flow and heat transfer of a non-Newtonian power law fluid over a vertical stretching
sheet. International Journal of Heat and Mass Transfer 53: 879-888.
Schowalter, W.R. 1960. The application of boundary-layer theory to
power-law pseudoplastic fluids: Similar solutions. AIChE Journal 6: 24-28.
Wang, T.Y. 1994. Similarity solution of laminar mixed
convection heat transfer from a horizontal plate to power-law fluid. Mingchi Institute of Technology Journal 26:
25-32.
Wilkinson, W.L. 1960. Non-Newtonian Fluids. London: Pergamon Press.
Xu, H. & Liao, S.J. 2009. Laminar flow and heat transfer
in the boundary-layer of non-Newtonian fluids over a stretching flat sheet. Computer
& Mathematics with Applications 57: 1425-1431.
Yao, S., Fang, T. & Zhong, Y. 2011. Heat
transfer of a generalized stretching/shrinking wall problem with convective
boundary conditions. Communications in Nonlinear Science and Numerical
Simulation 16: 752-760.
Zheng, L., Ting, L. & Zhang, X. 2008. Boundary
layer flow on a moving surface in otherwise quiescent pseudo-plastic non-
Newtonian fluids. Metallurgy 15: 241-244.
*Corresponding
author; email: anuar_mi@ukm.my
|