Sains Malaysiana 43(4)(2014): 583–594
Electrical
Characteristics and Modeling of a Filamentary Dielectric Barrier
Discharge
in Atmospheric Air
(Ciri Elektrik dan Model Suatu
Nyahcas Dielektrik Berpenghadang dalam Udara Atmosfera)
W.H. TAY, S.L. YAP
& C.S. WONG*
Plasma Technology Research Centre,
Physics Department, University of Malaya
50603 Kuala Lumpur, Malaysia
Received: 13 December 2012/Accepted: 15
July 2013
ABSTRACT
The electrical characteristics of a
filamentary dielectric barrier discharge (DBD)
are studied experimentally and numerically. The DBD system
which has parallel plate electrodes geometry is powered by a 50 Hz power supply
and operated at atmospheric air. A dynamic electric circuit model considering
the discharge region and the non-discharge region being connected by a surface
resistance is proposed. Simulation using this model is shown to fit the
experimentally measured QV diagram satisfactorily. The effects
of the air gap distance and the dielectric surface on the discharge behavior
are then investigated. It is found that the surface resistivity of the
dielectric is one of the important parameters governing the discharge behavior.
Keywords: Dielectric barrier
discharge; electrical characteristics; electrical modeling; filamentary
discharge
ABSTRAK
Ciri nyahcas dielektrik berpenghadang
(DBD) telah dikaji secara eksperimen dan
berangka. Sistem DBD yang mengandungi dua elektrod plat yang selari
dikuasakan dengan bekalan kuasa 50 Hz dan beroperasi dalam udara
atmosfera. Satu model elektrik yang mengambil kira rantau tidak
bernyahcas dan rantau bernyahcas telah dicadangkan. Dalam model
elektrik ini, rantau tidak bernyahcas dan rantau bernyahcas disambung
dengan satu rintangan permukaan. Keputusan simulasi berjaya menyamai
keputusan Lissajous QV yang
diperoleh daripada eksperimen. Kesan jarak jurang ruang dan rintangan
permukaan dielektrik dalam DBD juga dikaji dan didapati bahawa rintangan
permukaan dielektrik adalah satu parameter yang penting untuk mengawal
sifat nyahcas.
Kata
kunci: Ciri elektrik; nyahcas dielektrik berpenghadang; nyahcas filamen; model
elektrik
REFERENCES
Bartnikas, R., Radu, I.
& Wertheimer, M.R. 2007. Dielectric electrode surface effects on
atmospheric pressure glow discharges in helium. IEEE Transactions on Plasma
Science 35: 1437-1447.
Bhosle, S., Zissis, G.,
Damelincourt, J.J., Capdevila, A., Gupta, K., Dawson, F.P. & Tarasenko,
V.F. 2005. Electrical modeling of a homogeneous dielectric barrier discharge
(DBD). Conference Record of the 2005 IEEE Industry Applications Conference 4:
2315-2319.
Bhosle, S., Zissis, G.,
Damelincourt, J.J. & Dawson, FP. 2004. Calculation of the impedance of an
axisymetric DBD lamp for power supply design purposes. Conference Record of
the 2004 IEEE Industry Applications Conference 3: 1667-1670.
Brandenburg, R.,
Navratil, Z., Jansky, J., St’ahel, P., Trunec, D. & Wagner, H.E. 2009. The
transition between different modes of barrier discharges at atmospheric
pressure. Journal of Physics D-Applied Physics 42(8): 085208.
Chirokov, A., Gutsol,
A., Fridman, A., Sieber, K.D., Grace, J.M. & Robinson, K.S. 2006. A study
of two-dimensional microdischarge pattern formation in dielectric barrier
discharges. Plasma Chemistry and Plasma Processing 26: 127-135.
Falkenstein, Z. &
Coogan, J.J. 1997. Microdischarge behaviour in the silent discharge of
nitrogen-oxygen and water-air mixtures. Journal of Physics D-Applied Physics 30: 817-825.
Flores-Fuentes, A.,
Pena-Eguiluz, R., Lopez-Callejas, R., Mercado-Cabrera, A., Valencia-Alvarado,
R., Barocio- Delgado, S. & de la Piedad-Beneitez, A. 2009. Electrical model
of an atmospheric pressure dielectric barrier discharge cell. IEEE
Transactions on Plasma Science 37(1): 128-134.
Gherardi, N. &
Massines, F. 2001. Mechanisms controlling the transition from glow silent
discharge to streamer discharge in nitrogen. IEEE Transactions on Plasma
Science 29: 536-544.
Hashim, S.A., Wong,
C.S., Abas, M.R. & Dahlan, K.Z. 2007. Feasibility study on the removal of
nitric oxide (NO) in gas phase using dielectric barrier discharge reactor. Malaysia
Journal of Science 26: 111-116.
Hashim, S.A., Wong,
C.S., Abas, M.R. & Dahlan, K.Z. 2010. Discharge based processing systems
for nitric oxide remediation. Sains Malaysiana 39: 981-987.
Kamchouchi, H.E. &
Zaky, A.A. 1975. A direct method for the calculation of the edge capacitance of
thick electrodes. Journal of Physics D-Applied Physics 8(2): 1365-1371.
Kim, G.H., Jeong, S.Y.,
Kwon, H.C. & Song, S.H. 2006. Capacitance between an atmospheric discharge
plasma and the dielectric electrode in the parallel cell reactor. Journal of
the Korean Physical Society 49: 1307-1311.
Kogelschatz, U.,
Eliasson, B. & Egli, W. 1997. Dielectric-barrier discharges. Principle and
applications. Journal De Physique Iv 7: 47-66.
Kogelschatz, U.,
Eliasson, B. & Egli, W. 1999. From ozone generators to flat television
screens: History and future potential of dielectric-barrier discharges. Pure
and Applied Chemistry 71: 1819-1828.
Kogelschatz, U. 2002.
Filamentary, patterned, and diffuse barrier discharges. IEEE Transactions on
Plasma Science 30: 1400-1408.
Kogelschatz, U. 2003.
Dielectric-barrier discharges: Their history, discharge physics, and industrial
applications. Plasma Chemistry and Plasma Processing 23: 1-46.
Kozlov, K.V., Wagner,
H.E., Brandenburg, R. & Michel, P. 2001. Spatio-temporally resolved
spectroscopic diagnostics of the barrier discharge in air at atmospheric
pressure. Journal of Physics D-Applied Physics 34: 3164-3176.
Li, M., Li, C.R., Zhan,
H.M., Xu, J.B. & Wang, X.X. 2008. Effect of surface charge trapping on
dielectric barrier discharge. Applied Physics Letters 92: 031503.
Liu, S.H. & Neiger,
M. 2003. Electrical modelling of homogeneous dielectric barrier discharges
under an arbitrary excitation voltage. Journal of Physics D-Applied Physics 36:
3144-3150.
Manley, T.C. 1943. The
electric characteristics of the ozonator discharge. Trans. Electrochem. Soc. 84: 83-96.
Naude, N., Cambronne,
J.P., Gherardi, N. & Massines, F. 2005. Electrical model and analysis of
the transition from an atmospheric pressure Townsend discharge to a filamentary
discharge. Journal of Physics D-Applied Physics 38: 530-538.
Pal, U.N., Sharma, A.K.,
Soni, J.S., Kr, S., Khatun, H., Kumar, M., Meena, B.L., Tyagi, M.S., Lee, B.J.,
Iberler, M., Jacoby, J. & Frank, K. 2009. Electrical modelling approach for
discharge analysis of a coaxial DBD tube filled with argon. Journal of
Physics D-Applied Physics 42(4): 045213.
Ramasamy, R.K., Rahman,
N.A. & Wong, C.S. 2001. Effect of temperature on the ozonation of textile
waste effluent. Color Technol. 117: 95-97.
Somerville, I. &
Vidaud, P. 1985. Surface spreading of charge due to ohmic conduction. Proceedings
of the Royal Society of London Series a-Mathematical Physical and Engineering
Sciences 399: 277-293.
Subedi, D.P., Tyata,
R.B., Khadgi, A. & Wong, C.S. 2012. Physiochemical and microbiological
analysis of drinking water treated by using ozone. Sains Malaysiana 41:
739-745.
Valdivia-Barrientos, R.,
Pacheco-Sotelo, J., Pacheco-Pacheco, M., Benitez-Read, J.S. &
Lopez-Callejas, R. 2006. Analysis and electrical modelling of a cylindrical DBD
configuration at different operating frequencies. Plasma Sources Science
& Technology 15: 237-245.
Wagner, H.E.,
Brandenburg, R., Kozlov, K.V., Sonnenfeld, A., Michel, P. & Behnke, J.F.
2003. The barrier discharge: Basic properties and applications to surface
treatment. Vacuum 71: 417-436.
*Corresponding author; email: cswong@um.edu.my
|