Sains Malaysiana 43(4)(2014): 595–601
Kesan Masa Pengendapan dan Saiz Elektrod
Lawan dalam
Penghasilan Katod Komposit LSCF-SDC Karbonat
untuk SOFC
(Effects of Deposition Time
and Counter-electrode Size on the Fabrication of LSCF-SDC Carbonate Composite Cathode for SOFC)
NURUL AKIDAH
BAHARUDDIN,
HAMIMAH
ABD.
RAHMAN,
ANDANASTUTI
MUCHTAR*,
ABU BAKAR SULONG
& HUDA ABDULLAH
Institut Sel Fuel, Universiti Kebangsaan
Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan
Malaysia
Received: 29 October 2012/Accepted: 15
July 2013
ABSTRAK
Penggunaan proses pengendapan elektroforetik (EPD)
telah menunjukkan potensi yang memberangsangkan dalam pembangunan
komponen katod untuk sel tunggal sel fuel oksida pepejal (SOFC).
Sehubungan itu, kesan saiz elektrod lawan dan
masa pengendapan terhadap ketebalan dan kualiti filem komposit katod
LSCF-SDC karbonat
pada substrat seria terdop samarium (SDC) karbonat telah dikaji untuk
membuktikan kebolehlaksanaan kaedah ini. Kesan
perubahan parameter tersebut terhadap penghasilan filem LSCF-SDC karbonat
dikenal pasti dengan menetapkan nilai pH ampaian dan voltan kenaan.
Parameter masa pengendapan diubah suai dengan lima masa yang berbeza
iaitu antara 10 - 30 min, manakala dua saiz elektrod lawan yang
digunakan ialah 25 × 25 mm2 dan 50 × 50 mm2. Filem komposit katod kemudian disinter pada suhu 600oC selama 90 min. Pencirian mikrostruktur dan ketebalan
filem LSCF ini diperoleh menggunakan mikroskop
imbasan elektron (SEM). Penggunaan
saiz elektrod lawan yang besar (50 × 50 mm2)
didapati mampu menghasilkan filem komposit katod yang lebih tebal.
Selain itu, kesan perubahan parameter (masa
pengendapan dan saiz jaring elektrod lawan) dikenal pasti melalui
analisis berat dan ketebalan filem LSCF-SDC karbonat.
Filem katod berketebalan 4.6 - 30.8 μm
telah berjaya diendap pada tempoh pengendapan yang digunakan.
Ketebalan katod komposit LSCF-SDC
karbonat yang diperoleh berada dalam julat ketebalan
yang telah dihasilkan oleh pengkaji terdahulu melalui kaedah pembentukan
yang sama ke atas bahan katod lain. Keputusan
kajian menunjukkan bahawa kaedah pengendapan elektroforetik bagi
pembentukan katod komposit amat berpotensi untuk kajian yang lebih
intensif.
Kata kunci: Elektrod lawan; LSCF-SDC karbonat; masa pengendapan; pengendapan elektroforetik (EPD)
ABSTRACT
The electrophoretic deposition (EPD)
process has shown great potential in the development of cathodes
for solid oxide fuel cell (SOFC). This study thus aimed to determine
the feasibility of the electrophoretic deposition technique in producing
composite cathode films. Two parameters were investigated, namely,
the effects of counter electrode size and those of deposition time
on the thickness and quality of an LSCF-SDC carbonate cathode composite
deposited onto an SDC carbonate substrate. The effects
of the changed parameters were observed by applying constant suspension
pH and voltage. Five different deposition times ranging from 10
to 30 min were selected. The counter electrode sizes used were 25
× 25 mm2 and 50 × 50 mm2. Then, the cathode composite films were sintered at 600°C for
90 min. Microstructural characterization and film thickness measurement
were performed using a scanning electron microscope (SEM). The 50 × 50 mm2 counter electrode was found to produce a cathode composite film
with higher thickness. The effects of the selected parameters (deposition
time and counter electrode size) were also determined by analyzing
the weight and thickness of the obtained LSCF-SDC carbonate films. The results showed that for the
selected time interval, a film thickness of 4.6 to 30.8 μm
is generated. Further studies on fabricating LSCF-SDC carbonate cathode composites
by electrophoretic deposition present promising potential given
that the film thickness obtained agree well with those derived
in previous studies on various types of cathode materials.
Keywords: Counter electrode; deposition time; electrophoretic
deposition (EPD); LSCF-SDC carbonate
REFERENCES
Asamoto, M., Miyake, S., Itagaki, Y., Sadaoka, Y. & Yahiro, H.
2008. Electrocatalytic performances of Ni/SDC anodes fabricated with
EPD techniques for direct oxidation of CH4 in
solid oxide fuel cells. Catalysis Today 139: 77-81.
Besra, L.,
Tetsuo, U.T., Suzuki, T.S. & Sakkab, Y. 2010. Experimental
verification of pH localization mechanism of particle consolidation at the
electrode/solution interface and its application to pulsed DC electrophoretic
deposition (EPD). Journal of the European Ceramic Society 30(5):
1187-1193.
Besra, L., Compson, C. & Liu, M. 2007. Electrophoretic deposition on non-conducting substrates: The case of YSZ film
on NiO-YSZ composite substrates for solid oxide fuel cell applications. Journal
of Power Sources 173: 130-136.
Besra, L.
& Liu, M. 2006. A review on fundamentals and applications of
electrophoretic deposition (EPD). Progress in Materials Science 52:
1- 61.
Bhosale, A.G., Kadam,
M.B., Joshi, R., Pawar, S.S. & Pawar, S.H. 2009. Studies on electrophoretic deposition of
nanocrystalline SDC electrolyte films. Journal of Alloys and Compounds 484:
795-800.
Chen, F. & Liu, M.
2001. Preparation of
Yttria-stabilized zirconia (Ysz) films on La0.85Sr0.15Mno3 (LSM) and LSM–YSZ substrates using an electrophoretic deposition (Epd)
process. Journal of the European Ceramic Society 21(2): 127-134.
De Riccardis, M.F.,
Carbone, D. & Rizzo, A. 2006. A novel method for preparing and characterizing alcoholic EPD
suspensions. Journal of Colloid and Interface Science 307:
109-115.
Dedikarni Panuh, Andanastuti Muchtar,
Norhamidi Muhamad & Wan Ramli Wan Daud. 2012. Kesan rawatan haba terhadap
mikrostruktur katod berliang Ag2O3-Bi2O3 di atas substratum keluli tahan karat yang disediakan dengan kaedah pengecutan
sluri. Sains Malaysiana 41(1): 121-127.
Fergus, J.W., Hui, R., Li, X., Wilkinson,
D.P. & Zhang, J. 2009. Solid Oxide Fuel Cells Materials Properties and
Performance. New York: CRC Press.
Greenwood, R. 2003. Review of the measurement of zeta
potentials in concentrated aqueous suspensions using electroacoustics. Advances
in Colloid and Interface Science 106: 55-81.
Hamimah Abd. Rahman,
Andanastuti Muchtar, Syaharizan Haron, Norhamidi Muhamad & Huda Abdullah. 2012. Kesan parameter pemprosesan dan bahan tambah terhadap pengendapan
elektroforetik filem LSCF6428. Sains Malaysiana 41(2): 237-244.
Hamimah Abd. Rahman,
Andanastuti, M., Norhamidi, M. & Huda, A. 2011a. LSCF
layer on SDC substrate by aqueous electrophoretic deposition. In Proceeding
of the 3rd International Conference on Fuel Cell & Hydrogen Technology
(ICFCHT), 22-23 Nov 2011, Kuala Lumpur, Malaysia.
Hamimah Abd. Rahman, Andanastuti Muchtar,
Norhamidi Muhamad & Huda Abdullah. 2011b. Fabrication and
characterisation of La0.6Sr0.4Co0.2Fe0.8O3-d-SDC
composite cathode. Key Engineering Materials 471-472: 268-273.
Lee, S., Song, H.S.,
Hyun, S.H., Kim, J. & Moon, J. 2010. LSCF–SDC core–shell high-performance durable
composite cathode. Journal of Power Sources 195(1): 118-123.
Ma, Q., Ma, J., Sa, Z.,
Yan, R., Gao, J. & Meng, G. 2006. A high-performance ammonia-fueled SOFC based on a YSZ thin-film electrolyte. Journal of Power Sources 164:
86-89.
Minh, N.Q. 2004. Solid oxide fuel cells
technology features and application. Solid State Ionics 174: 271-277.
Mishra, M.,
Bhattacharjee, S., Besra, L., Sharma, H.S., Uchikoshi, T. & Sakka, Y. 2010. Effect of pH
localization on microstructure evolution of deposits during aqueous
electrophoretic deposition (EPD). Journal of the European Ceramic
Society 30: 2467-2473.
Noorashrina A. Hamid, Andanastuti
Muchtar, Wan Ramli Wan Daud & Norhamidi Muhamad. 2009. Pencirian
mikrostruktur katod La-Sr-Co-Fe-O bagi sel fuel oksida pepejal bersuhu
sederhana (IT-SOFC). Sains Malaysiana 38(6): 857-861.
Santillán, M.J.,
Caneiro, A., Quaranta, N. & Boccaccini, A.R. 2009. Electrophoretic
deposition of La0.6Sr0.4Co0.8Fe0.2O3−δ
cathodes on Ce0.9Gd0.1O1.95 substrates for
intermediate temperature solid oxide fuel cell (It-Sofc). Journal of
the European Ceramic Society 29(6): 1125-1132.
Song, J.H., Park, S.I.,
Lee, J.H. & Kim, H.S. 2010. Fabrication characteristics of an anode-supported thin-film
electrolyte fabricated by the tape casting method for IT-SOFC. Journal
of Materials Processing Technology 198: 414-418.
Sutin Kuharuangrong. 2004. Effects of Ni
on the electrical conductivity and microstructure of La0.82Sr0.16MnO3. Ceramics International 30: 273-277.
Virkar, A.V., Chen, J., Cameron, W.T.
& Kim, J.W. 2000. The role of electrode microstructure on
activation and concentration polarizations in solid oxide fuel cells. Solid
State Ionics 131: 189-198.
Xia, C., Chen, F. &
Liu, M. 2001. Reduced-temperature solid oxide fuel cells fabricated by screen
printing. Electrochemical and Solid-State Letters 4: A52-A54.
*Corresponding author; email: muchtar@eng.ukm.my
|