Sains Malaysiana 43(4)(2014): 595–601

 

Kesan Masa Pengendapan dan Saiz Elektrod Lawan dalam

Penghasilan Katod Komposit LSCF-SDC Karbonat untuk SOFC

(Effects of Deposition Time and Counter-electrode Size on the Fabrication of LSCF-SDC Carbonate Composite Cathode for SOFC)

 

 

NURUL AKIDAH BAHARUDDIN, HAMIMAH ABD. RAHMAN, ANDANASTUTI MUCHTAR*,

ABU BAKAR SULONG & HUDA ABDULLAH

Institut Sel Fuel, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan

Malaysia

 

Received: 29 October 2012/Accepted: 15 July 2013

 

 

ABSTRAK

Penggunaan proses pengendapan elektroforetik (EPD) telah menunjukkan potensi yang memberangsangkan dalam pembangunan komponen katod untuk sel tunggal sel fuel oksida pepejal (SOFC). Sehubungan itu, kesan saiz elektrod lawan dan masa pengendapan terhadap ketebalan dan kualiti filem komposit katod LSCF-SDC karbonat pada substrat seria terdop samarium (SDC) karbonat telah dikaji untuk membuktikan kebolehlaksanaan kaedah ini. Kesan perubahan parameter tersebut terhadap penghasilan filem LSCF-SDC karbonat dikenal pasti dengan menetapkan nilai pH ampaian dan voltan kenaan. Parameter masa pengendapan diubah suai dengan lima masa yang berbeza iaitu antara 10 - 30 min, manakala dua saiz elektrod lawan yang digunakan ialah 25 × 25 mm2 dan 50 × 50 mm2. Filem komposit katod kemudian disinter pada suhu 600oC selama 90 min. Pencirian mikrostruktur dan ketebalan filem LSCF ini diperoleh menggunakan mikroskop imbasan elektron (SEM). Penggunaan saiz elektrod lawan yang besar (50 × 50 mm2) didapati mampu menghasilkan filem komposit katod yang lebih tebal. Selain itu, kesan perubahan parameter (masa pengendapan dan saiz jaring elektrod lawan) dikenal pasti melalui analisis berat dan ketebalan filem LSCF-SDC karbonat. Filem katod berketebalan 4.6 - 30.8 μm telah berjaya diendap pada tempoh pengendapan yang digunakan. Ketebalan katod komposit LSCF-SDC karbonat yang diperoleh berada dalam julat ketebalan yang telah dihasilkan oleh pengkaji terdahulu melalui kaedah pembentukan yang sama ke atas bahan katod lain. Keputusan kajian menunjukkan bahawa kaedah pengendapan elektroforetik bagi pembentukan katod komposit amat berpotensi untuk kajian yang lebih intensif.

 

Kata kunci: Elektrod lawan; LSCF-SDC karbonat; masa pengendapan; pengendapan elektroforetik (EPD)

 

ABSTRACT

The electrophoretic deposition (EPD) process has shown great potential in the development of cathodes for solid oxide fuel cell (SOFC). This study thus aimed to determine the feasibility of the electrophoretic deposition technique in producing composite cathode films. Two parameters were investigated, namely, the effects of counter electrode size and those of deposition time on the thickness and quality of an LSCF-SDC carbonate cathode composite deposited onto an SDC carbonate substrate. The effects of the changed parameters were observed by applying constant suspension pH and voltage. Five different deposition times ranging from 10 to 30 min were selected. The counter electrode sizes used were 25 × 25 mm2 and 50 × 50 mm2. Then, the cathode composite films were sintered at 600°C for 90 min. Microstructural characterization and film thickness measurement were performed using a scanning electron microscope (SEM). The 50 × 50 mm2 counter electrode was found to produce a cathode composite film with higher thickness. The effects of the selected parameters (deposition time and counter electrode size) were also determined by analyzing the weight and thickness of the obtained LSCF-SDC carbonate films. The results showed that for the selected time interval, a film thickness of 4.6 to 30.8 μm is generated. Further studies on fabricating LSCF-SDC carbonate cathode composites by electrophoretic deposition present promising potential given that the film thickness obtained agree well with those derived in previous studies on various types of cathode materials.

 

Keywords: Counter electrode; deposition time; electrophoretic deposition (EPD); LSCF-SDC carbonate

REFERENCES

Asamoto, M., Miyake, S., Itagaki, Y., Sadaoka, Y. & Yahiro, H. 2008. Electrocatalytic performances of Ni/SDC anodes fabricated with EPD techniques for direct oxidation of CH4 in solid oxide fuel cells. Catalysis Today 139: 77-81.

Besra, L., Tetsuo, U.T., Suzuki, T.S. & Sakkab, Y. 2010. Experimental verification of pH localization mechanism of particle consolidation at the electrode/solution interface and its application to pulsed DC electrophoretic deposition (EPD). Journal of the European Ceramic Society 30(5): 1187-1193.

Besra, L., Compson, C. & Liu, M. 2007. Electrophoretic deposition on non-conducting substrates: The case of YSZ film on NiO-YSZ composite substrates for solid oxide fuel cell applications. Journal of Power Sources 173: 130-136.

Besra, L. & Liu, M. 2006. A review on fundamentals and applications of electrophoretic deposition (EPD). Progress in Materials Science 52: 1- 61.

Bhosale, A.G., Kadam, M.B., Joshi, R., Pawar, S.S. & Pawar, S.H. 2009. Studies on electrophoretic deposition of nanocrystalline SDC electrolyte films. Journal of Alloys and Compounds 484: 795-800.

Chen, F. & Liu, M. 2001. Preparation of Yttria-stabilized zirconia (Ysz) films on La0.85Sr0.15Mno3 (LSM) and LSM–YSZ substrates using an electrophoretic deposition (Epd) process. Journal of the European Ceramic Society 21(2): 127-134.

De Riccardis, M.F., Carbone, D. & Rizzo, A. 2006. A novel method for preparing and characterizing alcoholic EPD suspensions. Journal of Colloid and Interface Science 307: 109-115.

Dedikarni Panuh, Andanastuti Muchtar, Norhamidi Muhamad & Wan Ramli Wan Daud. 2012. Kesan rawatan haba terhadap mikrostruktur katod berliang Ag2O3-Bi2O3 di atas substratum keluli tahan karat yang disediakan dengan kaedah pengecutan sluri. Sains Malaysiana 41(1): 121-127.

Fergus, J.W., Hui, R., Li, X., Wilkinson, D.P. & Zhang, J. 2009. Solid Oxide Fuel Cells Materials Properties and Performance. New York: CRC Press.

Greenwood, R. 2003. Review of the measurement of zeta potentials in concentrated aqueous suspensions using electroacoustics. Advances in Colloid and Interface Science 106: 55-81.

Hamimah Abd. Rahman, Andanastuti Muchtar, Syaharizan Haron, Norhamidi Muhamad & Huda Abdullah. 2012. Kesan parameter pemprosesan dan bahan tambah terhadap pengendapan elektroforetik filem LSCF6428. Sains Malaysiana 41(2): 237-244.

Hamimah Abd. Rahman, Andanastuti, M., Norhamidi, M. & Huda, A. 2011a. LSCF layer on SDC substrate by aqueous electrophoretic deposition. In Proceeding of the 3rd International Conference on Fuel Cell & Hydrogen Technology (ICFCHT), 22-23 Nov 2011, Kuala Lumpur, Malaysia.

Hamimah Abd. Rahman, Andanastuti Muchtar, Norhamidi Muhamad & Huda Abdullah. 2011b. Fabrication and characterisation of La0.6Sr0.4Co0.2Fe0.8O3-d-SDC composite cathode. Key Engineering Materials 471-472: 268-273.

Lee, S., Song, H.S., Hyun, S.H., Kim, J. & Moon, J. 2010. LSCF–SDC core–shell high-performance durable composite cathode. Journal of Power Sources 195(1): 118-123.

Ma, Q., Ma, J., Sa, Z., Yan, R., Gao, J. & Meng, G. 2006. A high-performance ammonia-fueled SOFC based on a YSZ thin-film electrolyte. Journal of Power Sources 164: 86-89.

Minh, N.Q. 2004. Solid oxide fuel cells technology features and application. Solid State Ionics 174: 271-277.

Mishra, M., Bhattacharjee, S., Besra, L., Sharma, H.S., Uchikoshi, T. & Sakka, Y. 2010. Effect of pH localization on microstructure evolution of deposits during aqueous electrophoretic deposition (EPD). Journal of the European Ceramic Society 30: 2467-2473.

Noorashrina A. Hamid, Andanastuti Muchtar, Wan Ramli Wan Daud & Norhamidi Muhamad. 2009. Pencirian mikrostruktur katod La-Sr-Co-Fe-O bagi sel fuel oksida pepejal bersuhu sederhana (IT-SOFC). Sains Malaysiana 38(6): 857-861.

Santillán, M.J., Caneiro, A., Quaranta, N. & Boccaccini, A.R. 2009. Electrophoretic deposition of La0.6Sr0.4Co0.8Fe0.2O3−δ cathodes on Ce0.9Gd0.1O1.95 substrates for intermediate temperature solid oxide fuel cell (It-Sofc). Journal of the European Ceramic Society 29(6): 1125-1132.

Song, J.H., Park, S.I., Lee, J.H. & Kim, H.S. 2010. Fabrication characteristics of an anode-supported thin-film electrolyte fabricated by the tape casting method for IT-SOFC. Journal of Materials Processing Technology 198: 414-418.

Sutin Kuharuangrong. 2004. Effects of Ni on the electrical conductivity and microstructure of La0.82Sr0.16MnO3. Ceramics International 30: 273-277.

Virkar, A.V., Chen, J., Cameron, W.T. & Kim, J.W. 2000. The role of electrode microstructure on activation and concentration polarizations in solid oxide fuel cells. Solid State Ionics 131: 189-198.

Xia, C., Chen, F. & Liu, M. 2001. Reduced-temperature solid oxide fuel cells fabricated by screen printing. Electrochemical and Solid-State Letters 4: A52-A54.

 

 

*Corresponding author; email: muchtar@eng.ukm.my

 

 

 

previous