Sains Malaysiana 43(4)(2014): 603–609
Mechanical
and Thermal Properties of Graphene Oxide Filled Epoxy Nanocomposites
(Sifat Mekanik dan Terma Nanokomposit Epoksi Berpengisi Grafin
Oksida)
NOORHAFANITA NORHAKIM1, SAHRIM
HJ.
AHMAD1, CHIN
HUA
CHIA1*
& NAY
MING
HUANG2
1School
of Applied Physics, Faculty of Science and Technology, Universiti
Kebangsaan Malaysia
43600
Bangi, Selangor, Malaysia
2Physics
Department, Faculty of Science, University of Malaya, 50603 Kuala
Lumpur
Malaysia
Received:
20 July 2012/Accepted: 14 August 2013
ABSTRACT
In this study, graphene oxide (GO) filled epoxy nanocomposites were
prepared using hot pressed method. The GO was produced using modified
Hummers' method. The produced GO at different compositions (0.1,
0.3 and 0.5 wt%) were mixed with epoxy before the addition of hardener
using ultra-sonication. The produced epoxy nanocomposites were characterized
in terms of mechanical and thermal properties. The mechanical properties
of the nanocomposites were significantly enhanced by the addition
of GO. About 50% of increment in the flexural strength of the composite
sample filled with 0.3 wt% of GO as compared to the neat epoxy sample.
However, only slight improvement in the impact strength of the composite
were obtained by adding 0.1 wt% of GO.
Keywords: Epoxy; graphene oxide;
mechanical; nanocomposite
ABSTRAK
Dalam kajian ini komposit epoksi
berpengisi grafin oksida (GO) disediakan menggunakan kaedah penekanan panas. GO
tersebut dihasilkan melalui kaedah Hummers. Penyediaan campuran GO pada
komposisi yang berbeza (0.1, 0.3 dan 0.5 wt%) bersama epoksi dilakukan dengan
ultrasonik sebelum penambahan agen pengeras. Pencirian sifat mekanik dan terma
nanokomposit epoksi dijalankan. Sifat mekanik nanokomposit berjaya dipertingkatkan
dengan penambahan GO. Kekuatan lenturan bagi sampel 0.3 wt% GO meningkat
sebanyak 50% jika dibandingkan dengan epoksi tanpa pengisi. Walau bagaimanapun,
peningkatan yang sedikit telah diperoleh bagi kekuatan impak nanokomposit
berpengisi 0.1 wt% GO.
Kata
kunci: Epoksi; grafin oksida; mekanik; nanokomposit
REFERENCES
Chen, X.,
Wang, J., Lin, M., Zhong, W., Feng, T., Chen, X., Chen, J. & Xue, F. 2008.
Mechanical and thermal properties of epoxy nanocomposites reinforced with
amino-functionalized multi-walled carbon nanotubes. Materials Science and
Engineering: A 492(1-2): 236-242.
Dubin, S.,
Gilje, S., Wang, K., Tung, V.C., Cha, K., Hall, A.S., Farrar, J., Varshneya,
R., Yang, Y. & Kaner, R.B. 2010. A one-step, solvothermal reduction method
for producing reduced graphene oxide dispersions in organic solvents. ACS
Nano 4(7): 3845-3852.
Fang, M.,
Wang, K., Lu, H., Yang, Y. & Nutt, S. 2009. Covalent polymer
functionalization of graphene nanosheets and mechanical properties of
composites. Journal of Materials Chemistry 19(38): 7098-7105.
Ganguli,
S., Roy, A.K. & Anderson, D.P. 2008. Improved thermal conductivity for
chemically functionalized exfoliated graphite/epoxy composites. Carbon 46(5):
806-817.
Geng, Y.,
Liu, M.Y., Li, J., Shi, X.M. & Kim, J.K. 2008. Effects of surfactant
treatment on mechanical and electrical properties of CNT/epoxy nanocomposites. Composites
Part A: Applied Science and Manufacturing 39(12): 1876-1883.
Glaskova,
T., Zarrelli, M., Aniskevich, A., Giordano, M., Trinkler, L. & Berzina, B.
2012. Quantitative optical analysis of filler dispersion degree in
MWCNT–epoxy nanocomposite. Composites Science and Technology 72(4):
477-481.
Huang, N.,
Lim, H., Chia, C., Yarmo, M. & Muhamad, M. 2011. Simple room-temperature
preparation of high-yield large-area graphene oxide. International Journal
of Nanomedicine 6(1): 3443-3448.
Kaynak, C.,
Orgun, O. & Tincer, T. 2005. Matrix and interface modification of short
carbon fiber-reinforced epoxy. Polymer Testing 24(4): 455-462.
Kueseng, K.
& Jacob, K.I. 2006. Natural rubber nanocomposites with SiC nanoparticles
and carbon nanotubes. European Polymer Journal 42(1): 220-227.
Kuila, T.,
Bose, S., Mishra, A.K., Khanra, P., Kim, N.H. & Lee, J.H. 2012. Effect of
functionalized graphene on the physical properties of linear low density
polyethylene nanocomposites. Polymer Testing 31(1): 31-38.
Lorenz, H.,
Fritzsche, J., Das, A., Stöckelhuber, K.W., Jurk, R., Heinrich, G. &
Klüppel, M. 2009. Advanced elastomer nano-composites based on CNT-hybrid filler
systems. Composites Science and Technology 69(13): 2135-2143.
Ma, P.C.,
Mo, S.Y., Tang, B.Z. & Kim, J.K. 2010. Dispersion, interfacial interaction
and re-agglomeration of functionalized carbon nanotubes in epoxy composites. Carbon 48(6): 1824-1834.
Ma, P.C.,
Kim, J.K. & Tang, B.Z. 2007. Effects of silane functionalization on the
properties of carbon nanotube/ epoxy nanocomposites. Composites Science and
Technology 67(14): 2965-2972.
Martin-Gallego,
M., Verdejo, R., Lopez-Manchado, M.A. & Sangermano, M. 2011. Epoxy-Graphene
UV-cured nanocomposites. Polymer 52(21): 4664-4669.
Medhekar,
N.V., Ramasubramaniam, A., Ruoff, R.S. & Shenoy, V.B. 2010. Hydrogen
bondnetworks in graphene oxides nanocomposites paper: Structural and mechanical
properties. American Chemical Society 4: 2300-2306.
Montazeri,
A., Javadpour, J., Khavandi, A., Tcharkhtchi, A. & Mohajeri, A. 2010.
Mechanical properties of multi-walled carbon nanotube/epoxy composites. Materials
and Design 31(9): 4202-4208.
Pervin, F.,
Zhou, Y., Rangari, V.K. & Jeelani, S. 2005. Testing and evaluation on the
thermal and mechanical properties of carbon nano fiber reinforced SC-15 epoxy. Materials
Science and Engineering: A 405(1–2): 246-253.
Potts, J.R.,
Dreyer, D.R., Bielawski, C.W. & Ruoff, R.S. 2011. Graphene-based polymer
nnaocomposites. Polymer 52: 5-25.
Sengupta,
R., Bhattacharya, M., Bandyopadhyay, S. & Bhowmick, A.K. 2011. A review on
the mechanical and electrical properties of graphite and modified graphite
reinforced polymer composites. Progress in Polymer Science 36(5):
638-670.
Sui, G.,
Zhong, W.H., Liu, M.C. & Wu, P.H. 2009. Enhancing mechanical properties of
an epoxy resin using ‘liquid nano-reinforcements’. Materials Science and
Engineering: A 512: 139-142.
Theodore,
M., Hosur, M., Thomas, J. & Jeelani, S. 2011. Influence of
functionalization on properties of MWCNT–epoxy nanocomposites. Materials
Science and Engineering: A 528(3): 1192-1200.
Thostenson, E.T. & Chou, T.W. 2006.
Processing-structure-multi-functional property relationship in carbon
nanotube/epoxy composites. Carbon 44(14): 3022-3029.
Yang, K. & Gu, M.
2010. Enhanced thermal conductivity of epoxy nanocomposites filled with hybrid
filler system of triethylenetetramine-functionalized multi-walled carbon
nanotube/silane-modified nano-sized silicon carbide. Composites Part A:
Applied Science and Manufacturing 41(2): 215-221.
Yang, X., Tu, Y., Li,
L., Shang, S. & Tao, X.M. 2010. Well-dispersed chitosan/graphene oxide
nanocomposites. ACS Applied Materials and Interfaces 2(6): 1707-1713.
Zaman, I., Phan, T.T.,
Kuan, H.C., Meng, Q., Bao La, L.T., Luong, L., Youssf, O. & Ma, J. 2011.
Epoxy/graphene platelets nanocomposites with two levels of interface strength. Polymer 52(7): 1603-1611.
Zhou, Y., Pervin, F.,
Biswas, M.A., Rangari, V.K. & Jeelani, S. 2006. Fabrication and
characterization of montmorillonite clay-filled SC-15 epoxy. Materials
Letters 60(7): 869-873.
Zhou, Y., Pervin, F.,
Lewis, L. & Jeelani, S. 2007. Experimental study on the thermal and
mechanical properties of multi-walled carbon nanotube-reinforced epoxy. Materials
Science and Engineering: A 452-453(0): 657-664.
*Corresponding author;
email: chia@ukm.my
|