Sains Malaysiana 43(4)(2014): 629–636
Stochastic
Lead Time Demand Estimation via Monte Carlo Simulation Technique
in Supply
Chain Planning
(Anggaran Permintaan Masa
Lopor Stokastik Melalui Teknik Simulasi Monte Carlo dalam Perancangan Rantaian
Bekalan)
MOHAMAD MAHDAVI
& MOJTABA MAHDAVI*
Department
of Industrial Engineering, Islamic Azad University, Najafabad Branch, Isfahan
Iran
Received:
12 May 2013/Accepted: 18 July 2013
ABSTRACT
This paper considers a Monte Carlo
simulation based method for estimating cycle stocks (production
lot-sizing stocks) in a typical batch production system, where a
variety of products is scheduled for production at determined periods
of time. Delivery time is defined as the maximum lead time and pre-assembly
processing time of the product's raw materials in the method. The
product's final assembly cycle and delivery time, which were obtained
via the production schedule and supply chain simulation, respectively,
were both considered to estimate the demand distribution of product
based on total duration. Efficient random variates generators were
applied to model the lead time of the supply chain's stages. In
order to support the performance reliability of the proposed method,
a real case study is conducted and numerically analyzed.
Keywords: Cycle stock; inventory;
lead time demand; Monte Carlo; supply chain
ABSTRAK
Kertas ini mengambil kira kaedah
simulasi Monte Carlo untuk menganggarkan kitaran stok (tempat keluaran-saiz
stok) dalam sistem pengeluaran tipikal kelompok, dengan pelbagai produk
dijadualkan untuk pengeluaran pada jangka masa yang ditetapkan. Dalam kaedah
ini, masa penghantaran ditakrifkan sebagai masa lopor maksimum dan masa sebelum
pemprosesan produk bahan mentah. Kitaran pemasangan akhir produk dan masa penghantaran
masing-masing yang diperoleh melalui jadual pengeluaran dan simulasi rantaian
bekalan diambil kira untuk menganggarkan pembahagian permintaan produk
berdasarkan jumlah tempoh. Penjana pengubah rawak yang cekap digunakan sebagai
model masa lopor peringkat rantaian bekalan. Dalam usaha untuk menyokong
kebolehpercayaan prestasi kaedah penilaian yang dicadangkan, kajian kes sebenar
dijalankan dan dianalisis secara berangka.
Kata
kunci: Inventori; kitaran stok, Monte Carlo; permintaan masa utama; rantaian
bekalan
REFERENCES
Banks, J. & Carson,
S.J. 1984. Discrete-event System Simulation. New Jersey: Prentic-Hall Inc.
Baudet, P.,
Azzaro-Pantel, C., Domenech, S. & Pibouleau, L. 1995. A discrete-event
simulation approach for scheduling batch processes. Computers and Chemical
Engineering 19(Supplement 1): S633-S638.
Box, G.E.P. &
Muller, M.F. 1958. A note on the generation of random normal deviates. Annuals
of Mathematical Statistics 29: 610-611.
Crdenas-Barrón, L.E.
2009. On optimal batch sizing in a multi-stage production system with rework
consideration. European Journal of Operational Research 196: 1238-1244.
Dogrua, M.K., van
Houtumb, G.J. & de Kokb, A.G. 2008. Newsvendor equations for optimal
reorder levels of serial inventory systems with fixed batch sizes. Operations
Research Letters 36: 551-556.
Fishman, G.S. 1978. Principals
of Discrete Event Simulation. New York: Wiley.
Fishman, S.G. 1996. Monte
Carlo Concepts, Algorithms, and Applications. New York: Springer-Verlag.
Fuchino, T., Batres, R.,
Takahashi, Y. & Naka, Y. 1999. A combined batch process simulation in a
production support environment. Computers and Chemical Engineering 23(Supplement):
S199-S202.
Hoque, M.A. & Goyal,
S.K. 2000. An optimal policy for a single-vendor single-buyer integrated
production: Inventory system with capacity constraint of the transport
equipment. Int. J. Production Economics 65: 305-315.
Hoquea, M.A. &
Goyal, S.K. 2006. A heuristic solution procedure for an integrated inventory
system under controllable lead-time with equal or unequal sized batch shipments
between a vendor and a buyer. Int. J. Production Economics 102: 217-225.
Kevork, I.S. 2010.
Estimating the optimal order quantity and the maximum expected profit for
single-period inventory decisions. Omega 38: 218-227.
Mohsen, S.S.,
Thorstenson, A. & Mohammad, R.A.J. 2010. An integrated vendor-buyer model
with stock-dependent demand. Transportation Research Part E 46: 963-974.
Nair, A. & Closs, D.J. 2006. An
examination of the impact of coordinating supply chain policies and price
markdowns on short lifecycle product retail performance. Int. J. Production
Economics 102: 379-392.
Omar, M. & Smith, D.K. 2002. An optimal batch size for a
production system under increasing time-varying demand process. Com. Ind.
Eng. 42: 35-42.
Rau, H. & OuYang,
B.C. 2008. An optimal batch size for integrated production-inventory policy in
a supply chain. European Journal of Operational Research 185: 619-634.
Sarker, R.A., Mustafizul
Karim, A.N. & Anwarul Haque, A.F.M. 1995. An optimal batch size for a
production system operating under a continous supply/demand. Int. J. Ind.
Eng. 2(3): 189-198.
Sarker, B.R. &
Parija, G.R. 1996. Optimal batch size and raw material ordering policy for a
production system with a fixed-interval, lumpy demand delivery system. European
Journal of Operational Research 89: 593-608.
Sarker, R.A. & Khan,
L.R. 1999. An optimal batch size for a production system operating under
periodic delivery policy. Computers & Industrial Engineering 37(4):
711-730.
Schmeiser, B.W. 1981.
Random variate generation: A survey. In Simulation with Discrete Models: A
State of the Art View, edited by Oren, T.I., Shub, C.M. & Roth, P.F.
IEEE. pp. 76-104.
Schmidt, J.W. &
Taylor, R.E. 1970. Simulation and Analysis of Industrial Systems. Homewood,
Illinois: Irwin.
Stefanovic, D.,
Stefanovic, N. & Radenkovic, B. 2009. Supply network modelling and
simulation methodology. Simulation Modelling Practice and Theory 17:
743-766.
Timpe, C.H. &
Kallrath, J. 2000. Optimal planning in large multi-site production networks. European
Journal of Operational Research 126: 422-435.
Vilko, J.P.P. &
Hallikas, J.M. 2011. Risk assessment in multimodal supply chains.
International Journal of Production Economics 140(2): 586-595.
Wu, D. & Olson, D.L.
2008. Supply chain risk, simulation, and vendor selection. Int. J.
Production Economics 114: 646-655.
Xua, J., Chena, S., Lin,
B. & Bhatnagar, R. 2010. Optimal production and rationing policies of a
make-to-stock production system with batch demand and backordering. Operations
Research Letters 38: 231-235.
Zhao, Y. 2009. Analysis
and evaluation of an Assemble-to-Order system with batch ordering policy and
compound Poisson demand. European Journal of Operational Research 198:
800-809.
*Corresponding author;
email: m.mahdavi@pin.iaun.ac.ir
|