Sains Malaysiana 43(4)(2014): 629–636

 

Stochastic Lead Time Demand Estimation via Monte Carlo Simulation Technique

in Supply Chain Planning

(Anggaran Permintaan Masa Lopor Stokastik Melalui Teknik Simulasi Monte Carlo dalam Perancangan Rantaian Bekalan)

 

 

MOHAMAD MAHDAVI & MOJTABA MAHDAVI*

Department of Industrial Engineering, Islamic Azad University, Najafabad Branch, Isfahan Iran

 

Received: 12 May 2013/Accepted: 18 July 2013

 

 

ABSTRACT

This paper considers a Monte Carlo simulation based method for estimating cycle stocks (production lot-sizing stocks) in a typical batch production system, where a variety of products is scheduled for production at determined periods of time. Delivery time is defined as the maximum lead time and pre-assembly processing time of the product's raw materials in the method. The product's final assembly cycle and delivery time, which were obtained via the production schedule and supply chain simulation, respectively, were both considered to estimate the demand distribution of product based on total duration. Efficient random variates generators were applied to model the lead time of the supply chain's stages. In order to support the performance reliability of the proposed method, a real case study is conducted and numerically analyzed.

 

Keywords: Cycle stock; inventory; lead time demand; Monte Carlo; supply chain

 

ABSTRAK

Kertas ini mengambil kira kaedah simulasi Monte Carlo untuk menganggarkan kitaran stok (tempat keluaran-saiz stok) dalam sistem pengeluaran tipikal kelompok, dengan pelbagai produk dijadualkan untuk pengeluaran pada jangka masa yang ditetapkan. Dalam kaedah ini, masa penghantaran ditakrifkan sebagai masa lopor maksimum dan masa sebelum pemprosesan produk bahan mentah. Kitaran pemasangan akhir produk dan masa penghantaran masing-masing yang diperoleh melalui jadual pengeluaran dan simulasi rantaian bekalan diambil kira untuk menganggarkan pembahagian permintaan produk berdasarkan jumlah tempoh. Penjana pengubah rawak yang cekap digunakan sebagai model masa lopor peringkat rantaian bekalan. Dalam usaha untuk menyokong kebolehpercayaan prestasi kaedah penilaian yang dicadangkan, kajian kes sebenar dijalankan dan dianalisis secara berangka.

 

Kata kunci: Inventori; kitaran stok, Monte Carlo; permintaan masa utama; rantaian bekalan

REFERENCES

Banks, J. & Carson, S.J. 1984. Discrete-event System Simulation. New Jersey: Prentic-Hall Inc.

Baudet, P., Azzaro-Pantel, C., Domenech, S. & Pibouleau, L. 1995. A discrete-event simulation approach for scheduling batch processes. Computers and Chemical Engineering 19(Supplement 1): S633-S638.

Box, G.E.P. & Muller, M.F. 1958. A note on the generation of random normal deviates. Annuals of Mathematical Statistics 29: 610-611.

Crdenas-Barrón, L.E. 2009. On optimal batch sizing in a multi-stage production system with rework consideration. European Journal of Operational Research 196: 1238-1244.

Dogrua, M.K., van Houtumb, G.J. & de Kokb, A.G. 2008. Newsvendor equations for optimal reorder levels of serial inventory systems with fixed batch sizes. Operations Research Letters 36: 551-556.

Fishman, G.S. 1978. Principals of Discrete Event Simulation. New York: Wiley.

Fishman, S.G. 1996. Monte Carlo Concepts, Algorithms, and Applications. New York: Springer-Verlag.

Fuchino, T., Batres, R., Takahashi, Y. & Naka, Y. 1999. A combined batch process simulation in a production support environment. Computers and Chemical Engineering 23(Supplement): S199-S202.

Hoque, M.A. & Goyal, S.K. 2000. An optimal policy for a single-vendor single-buyer integrated production: Inventory system with capacity constraint of the transport equipment. Int. J. Production Economics 65: 305-315.

Hoquea, M.A. & Goyal, S.K. 2006. A heuristic solution procedure for an integrated inventory system under controllable lead-time with equal or unequal sized batch shipments between a vendor and a buyer. Int. J. Production Economics 102: 217-225.

Kevork, I.S. 2010. Estimating the optimal order quantity and the maximum expected profit for single-period inventory decisions. Omega 38: 218-227.

Mohsen, S.S., Thorstenson, A. & Mohammad, R.A.J. 2010. An integrated vendor-buyer model with stock-dependent demand. Transportation Research Part E 46: 963-974.

Nair, A. & Closs, D.J. 2006. An examination of the impact of coordinating supply chain policies and price markdowns on short lifecycle product retail performance. Int. J. Production Economics 102: 379-392.

Omar, M. & Smith, D.K. 2002. An optimal batch size for a production system under increasing time-varying demand process. Com. Ind. Eng. 42: 35-42.

Rau, H. & OuYang, B.C. 2008. An optimal batch size for integrated production-inventory policy in a supply chain. European Journal of Operational Research 185: 619-634.

Sarker, R.A., Mustafizul Karim, A.N. & Anwarul Haque, A.F.M. 1995. An optimal batch size for a production system operating under a continous supply/demand. Int. J. Ind. Eng. 2(3): 189-198.

Sarker, B.R. & Parija, G.R. 1996. Optimal batch size and raw material ordering policy for a production system with a fixed-interval, lumpy demand delivery system. European Journal of Operational Research 89: 593-608.

Sarker, R.A. & Khan, L.R. 1999. An optimal batch size for a production system operating under periodic delivery policy. Computers & Industrial Engineering 37(4): 711-730.

Schmeiser, B.W. 1981. Random variate generation: A survey. In Simulation with Discrete Models: A State of the Art View, edited by Oren, T.I., Shub, C.M. & Roth, P.F. IEEE. pp. 76-104.

Schmidt, J.W. & Taylor, R.E. 1970. Simulation and Analysis of Industrial Systems. Homewood, Illinois: Irwin.

Stefanovic, D., Stefanovic, N. & Radenkovic, B. 2009. Supply network modelling and simulation methodology. Simulation Modelling Practice and Theory 17: 743-766.

Timpe, C.H. & Kallrath, J. 2000. Optimal planning in large multi-site production networks. European Journal of Operational Research 126: 422-435.

Vilko, J.P.P. & Hallikas, J.M. 2011. Risk assessment in multimodal supply chains. International Journal of Production Economics 140(2): 586-595.

Wu, D. & Olson, D.L. 2008. Supply chain risk, simulation, and vendor selection. Int. J. Production Economics 114: 646-655.

Xua, J., Chena, S., Lin, B. & Bhatnagar, R. 2010. Optimal production and rationing policies of a make-to-stock production system with batch demand and backordering. Operations Research Letters 38: 231-235.

Zhao, Y. 2009. Analysis and evaluation of an Assemble-to-Order system with batch ordering policy and compound Poisson demand. European Journal of Operational Research 198: 800-809.

 

 

*Corresponding author; email: m.mahdavi@pin.iaun.ac.ir

 

 

previous