Sains Malaysiana 43(4)(2014):
643–648
Comparing
Groups Using Robust H Statistic with Adaptive Trimmed Mean
(Perbandingan Kumpulan
Menggunakan H Statistik Tegar dan Min Terpangkas Suai)
NUR FARAIDAH
MUHAMMAD DI1*, SHARIPAH SOAAD
SYED YAHAYA2& SUHAIDA ABDULLAH2
139. JBC, Taman Bukit Cermin, 28400 Mentakab,
Pahang Darul Makmur, Malaysia
2School of Quantitative Science, College
of Arts and Sciences
University Utara Malaysia, 06010 UUM
Sintok, Kedah Darul Aman, Malaysia
Received: 23 July 2012/Accepted: 14
August 2013
ABSTRACT
An alternative robust method for testing
the equality of central tendency measures was developed by integrating
H Statistic
with adaptive trimmed mean using hinge estimator, HQ.
H Statistic is known for its ability to control Type I error
rates and HQ is a robust location estimator.
This robust estimator used asymmetric trimming technique, where
it trims the tail of the distribution based on the characteristic
of that particular distribution. To investigate on the performance
(i.e. robustness) of the procedure, some variables were manipulated
to create conditions which are known to highlight its strengths
and weaknesses. Bootstrap method was used to test the hypothesis.
The integration seemed to produce promising robust procedure that
is capable of addressing the problem of violations to the assumptions.
About 20% trimming is the appropriate amount of trimming for the
procedure, where this amount is found to be robust in most conditions.
This procedure was also proven to be robust as compared to the parametric
(ANOVA)
and non-parametric (Kruskal-Wallis) methods.
Keywords: Asymmetric trimmed mean;
bootstrap; H Statistic; hinge estimator; robust statistics; Type I error
rates
ABSTRAK
Kaedah alternatif yang teguh bagi menguji
persamaan sukatan kecenderungan memusat telah dibentuk dengan mengintegrasikan
H Statistik dengan min terpangkas suai menggunakan penganggar
engsel, HQ. H Statistik dikenali
kerana kebolehannya untuk mengawal ralat jenis I dan HQ
adalah penganggar lokasi yang teguh. Penganggar teguh
ini menggunakan teknik pemangkasan asimetri, dengan memangkas hujung
taburan berdasarkan ciri-ciri taburan tersebut. Bagi menguji prestasi
(iaitu keteguhan) prosedur, beberapa pemboleh ubah dimanipulasi
untuk melihat kekuatan dan kelemahan prosedur. Kaedah Butstrap
digunakan untuk menguji hipotesis. Integrasi ini menghasilkan prosedur
teguh yang mampu menangani masalah pelanggaran andaian. Nilai pemangkas
yang sesuai bagi prosedur ini ialah 20% dan didapati tegar dalam
kebanyakan keadaan yang dikaji. Prosedur ini juga telah terbukti
teguh berbanding kaedah parametrik (ANOVA)
dan kaedah tidak berparametrik (Kruskal-Wallis).
Kata
kunci: Butstrap; H statistik; min terpangkas asimetri; penganggar engsel; ralat
jenis I; statistik teguh
REFERENCES
Baguio, C.B.
2008. Trimmed mean as an adaptive robust estimator of a location parameter for
Weibull distribution. World Academy of Science, Engineering and Technology 42:
681-686.
Bradley,
J.V. 1978. Robustness? British Journal of Mathematical and Statistical
Psychology 31: 144-152.
Hogg, R.V.
1974. Adaptive robust procedures: A partial review and some suggestions for
future applications and theory. Journal of the American Statistical
Association 69: 909-923.
Keselman,
H.J., Wilcox, R.R., Lix, L.M., Algina, J. & Fradette, K. 2007. Adaptive
robust estimation and testing. British Journal of Mathematical and
Statistical Psychology 60: 267-293.
Keselman,
H.J., Algina, J. & Fradette, K. 2005. Robust confidence intervals for
effect size in the two-group case. Journal of Modern Applied Statistical
Methods 4(2): 353-371.
Luh, W.M.
& Guo, J.H. 1999. A powerful transformation trimmed mean method for one-way
fixed effects ANOVA model under non-normality and inequality of variances. British
Journal of Mathematical and Statistical Pscycology 52(2): 303-320.
Othman, A.R., Keselman,
H.J., Padmanabhan, A.R., Wilcox, R.R & Fradette, K. 2004. Comparing
measures of the 'typical' score across treatment groups. British
Journal of Mathematical and Statistical Psychology 57(2): 215-234.
Reed, J.F. & Stark, D.B. 1996. Hinge
estimators of location: Robust to asymmetry. Computer Methods and Programs
in Biomedicine 49(1): 11-17.
Schrader, R.M. & Hettmansperger, T.P.
1980. Robust analysis of variance based upon a likelihood ratio criterion. Biometrika 67(1): 93-101.
Syed Yahya, S.S. 2005. Robust statistical
procedures for testing the equality of central tendency parameters under skewed
distribution. PhD thesis. Universiti Sains Malaysia, Penang (Unpublished).
Wilcox, R.R. 2005. Trimmed Means. Encyclopedia
of Statistics in Behavioral Science 4: 2066-2067.
Wilcox, R.R. 2012. Introduction
to Robust Estimation and Hypothesis Testing. 3rd ed. San Diego,
CA: Academic Press.
Wu, P.C. 2007. Modern one-way ANOVA F methods:
Trimmed means, one step M-estimators and bootstrap methods. Journal
of Quantitative Research 1: 155-172.
Yu, C.H. 2010. Parametric Tests.
Creative Wisdom: http://www. creative-wisdom.com/teaching/WBI/parametric_test.shtml.
Accessed on January 10, 2010.
Zar, J.H. 1996. ANOVA Assumptions. Biostatistical
Analysis. 3rd ed. New Jersey: Prentice Hall Inc. p. 128.
*Corresponding author; email: nurfaraidah@gmail.com
|