Sains Malaysiana 43(5)(2014):
757–766
Sr/Ca, Mg/Ca and Ba/Ca Ratios in the Otolith of Sea Bass in
Peninsular Malaysia as Salinity Influence Markers
(Nisbah Sr/Ca, Mg/Ca dan Ba/Ca dalam Otolit Ikan Siakap di
Semenanjung Malaysia sebagai Penunjuk Pengaruh Saliniti)
AFIZA SURIANI SARIMIN & CHE ABD RAHIM MOHAMED*
School of Environmental and Natural Resource Sciences, Faculty
of Science and Technology
Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
Received: 20 January 2012/Accepted: 23 August 2013
ABSTRACT
The otoliths of sea bass (Lates calcarifer) were sampled from 23 locations in Peninsular
Malaysia in order to analyse the Sr/Ca, Mg/Ca and Ba/Ca ratios. This study
found that these elements/Ca ratios in sea bass otoliths correlated with the
salinity zone (thalassic series) compared with elements/Ca ratios in ambient
water. The contradictory pattern of Sr/Ca ratios and Ba/Ca ratios in otoliths
were found according to salinity zone variations. Thus, oligohaline waters showed
highest Ba/Ca ratios while the highest Sr/Ca ratios were recorded for saline
waters. The terrigenous enrichment of Ba in water also affects the Ba content
in otoliths. The presence of Mg in otoliths acts as a rival to Ba, thus
affecting Mg and Ba deposition. Meanwhile, Ba is the tracer for salinity
fluctuations based on the partition coefficient (D) and shows significant
changes. However, the elements in otoliths were found to originate indirectly
from the water column. The sequence of the elements/Ca ratios in otoliths and
ambient water were as follows, Sr/Ca>Mg/Ca>Ba/Ca and
Sr/Ca>Ba/Ca>Mg/Ca, respectively.
Keywords: Ba/Ca; Mg/Ca; Otolith; Sr/Ca; thalassic series
ABSTRAK
Sebanyak 23 lokasi di Semenanjung Malaysia telah dipilih untuk
persampelan ikan siakap (Lates
calcarifer). Otolit ikan siakap dianalisis untuk mendapatkan nisbah Sr/Ca,
Mg/Ca dan Ba/Ca. Kajian ini mendapati nisbah elemen/Ca dalam otolit mempunyai
korelasi dengan saliniti berbanding nisbah elemen/Ca dalam air ambien. Nisbah
Sr/Ca dalam otolit didapati bertentangan dengan nisbah Ba/Ca dalam otolit dan
berubah mengikut saliniti. Oleh itu, nisbah Ba/Ca dalam otolit adalah tinggi
dalam air oligohalin manakala nisbah Sr/Ca dalam otolit adalah tinggi dalam air
masin. Pengkayaan unsur Ba dalam air ambien mempengaruhi kandungan Ba dalam
otolit. Manakala, kehadiran Mg dalam otolit adalah pesaing kepada Ba lalu
mempengaruhi pengenapan Ba pada otolit. Unsur Ba merupakan penyurih berdasarkan
pekali sekatan (D) menunjukkan perubahan yang signifikan. Walau bagaimanapun,
sumber elemen dalam otolit adalah daripada pengaruh air ambien. Turutan nisbah
elemen/Ca dalam otolit dan air ambien didapati masing-masing adalah
Sr/Ca>Mg/Ca>Ba/Ca dan Sr/Ca>Ba/Ca>Mg/Ca.
Kata kunci: Ba/Ca; Mg/Ca; otolit; Sr/Ca; siri
talasik
REFERENCES
Afiza Suriani, S., Mazlan, A.G. & Mohamed,
C.A.R. 2009a. Variation of Ca, Sr, Ba and Mg in the otolith of giant mudskipper
in west coast of Peninsular Malaysia. Pakistan Biological Journal of Science 12(3): 231-238.
Afiza Suriani, S., Noorliza, Z. & Mohamed,
C.A.R. 2009b. Kepekatan unsur makro dan surih dalam otolit, isi ikan siakap dan
air laut di Sedili Kechil. In Seminar Penyelidikan Pantai Timur: Mersing
Warisan Terpelihara. Mersing, 28-29 March, Malaysia.
Arai, T., Ikemoto, T., Kunito, T., Tanabe, S.
& Miyazaki, N. 2002. Otolith microchemistry of the conger eel, Conger
myriaster. Journal of the Marine Biological Association of the United
Kingdom 82: 303-305.
Arai, T. & Miyazaki, N. 2001. Use of otolith
microchemistry to estimate the miratory history of the Russian sturgeon, Acipenser
guldenstadti. Journal of the Marine Biological Association of the United
Kingdom 81: 709-710.
Blaber, S.J.M. 2000. Tropical Estuarine
Fishes. Ecology, Exploitation and Conservation. Fish Aqua. Res. Ser., 7.
Blackwell Science. pp. 129-140.
Campana, S.E. & Tzeng, W.N. 2000. Section 4:
Otolith composition. Fisheries Research 46: 287-288.
Campana, S.E. 1999. Chemistry and compositions
of fish otoliths: Pathways, mechanism and applications. Marine Ecology
Progress Series 188: 263-297.
Campana, S.E. & Neilson, J.D. 1985.
Microstructure of fish otoliths. Canadian Journal of Fisheries and Aquatic
Science 42: 1014-1032.
Degens, E.T., Deuser, W.G. & Haedrich, R.L.
1969. Molecular structure and composition of fish otoliths. International
Journal of Life Oceans and Coastal Waters 2: 105-113.
de Vries, M.C., Gillanders, M.B. & Elsdon,
T.S. 2005. Facilitation of barium uptake into otoliths: Influence of strontium
concentration and salinity. Geochimica Cosmochimica Acta 69: 4061-4072.
DOF (Department of Fisheries). 2007. Fisheries
Annual Statistical Vol 1., Putrajaya, p. 185.
Dwyer, K.S., Stephen, J.W. & Campana, S.E.
2003. Age determination, validation and growth of Grand Bank yellowtail
flounder (Limanda ferriginea). ICES Journal of Marine Science 60:
1123-1138.
Elsdon, T.S. & Gillanders, B.M. 2003a.
Reconstructing migratory patterns of fish based on environmental influences on
otolith chemistry. Fish Biology and Fisheries 13: 219-235.
Elsdon, T.S. & Gillanders, B.M. 2003b.
Relationship between water and otolith elemental concentrations in juvenile
black bream Acanthopagrus butcheri. Marine Ecology Progress Series 260:
263-272.
Farrell, J. & Campana, S.E. 1996. Regulation
of calcium and strontium deposition on the otoliths of juvenile tilapia, Oreochromis
niloticus. Comparative Biochemistry and Physiology 115A(2): 103-109.
Gauldie, R.W., West, I.F. & Coote, G.E.
1995. Evaluating otolith age estimates for Holosthertus atlanticus by
comparing patterns of checks, cycle in microincrement width, and cycles in
strontium and calcium composition. Bulletin of Marine Science 56:
76-102.
Gillanders, B.M. 2005. Using elemental chemistry
of fish otoliths to determine connectivity between estuarine and coastal
habitats. Estuarine Coastal Shelf Science 64: 47-57.
Grandcourt, E.M., Al Abdessalaam, T.Z. &
Francis, F. 2006. Age, growth, mortality and reproduction of the blackspot
snapper, Lutjanus fulviflamma (Forsskäl, 1775), in the southern Arabian
Gulf Fisheries Research 78: 203-210.
Grey, D.L. 1987. An overview of Lates
calcarifer in Australia and Asia. In Management of Wild and Cultured Sea
Bass Barramundi Lates calcarifer, edited by Copland, J.W. ACIAR
Proceeding 20: 15-21.
Hamer, P.A., Jenkins, G.P. & Coutin, P.
2006. Barium variation in Pagrus auratus (Sparidae) otoliths: A
potential indicator of migration between an embayment and ocean waters in
south-eastern Australia. Estuarine Coastal and Shelf Science 68:
686-702.
Kafemann, R., Adlerstein, S.M. & Neukamm, R.
2000. Variation in otolith strontium and calcium artios as an indicator of
life-histories strategies of freshwater species within a brackish water system. Fisheries Research 46: 313-325.
Leakey, C.D.B., Attrill, M.J. & Fitzsimons,
M.F. 2009. Multi-element otolith chemistry of juvenile sole (Solea solea),
whiting (Merlangius merlangus) and European seabass (Dicentrarchus
labrax) in the Thames estuary and adjacent coastal regions. Journal of
Sea Research 61(4): 268-274.
Lin, S.H., Chang, C.W., Iizuka, Y. & Tzeng,
W.N. 2007. Salinities, not diet, affects strontium/calcium ratios in otoliths
of Anguilla japonica. Journal of Experimental Marine Biology and Ecology 341:
254-263.
Kumar, A.R. & Riyazuddin, P. 2009. Comparative study of
analytical methods for the determination of chromium in groundwater samples containing iron. Microchemical
Journal 93(2): 236-241.
Miller, B.M., Clough, A.M., Batson, J.H. & Vachet, R.W.
2006. Transition metal binding to cod otolith proteins. Journal of
Experimental Marine Biology and Ecology 329: 135-143.
Milton, D.A. & Chenery, S.R. 2001. Sources and uptakes
of trace metals in otoliths of juvenile barramundi (Lates calcarifer). Journal
of Experimental Marine Biology and Ecology 264: 47-65.
Moore, R. 1979. Natural sex invasion in the giant sea perch
(Lates calcarifer). Australian Journal of Marine and Freshwater
Research 30: 803-813.
Morales-Nin, B., Geffen, A.J., Cardona, F., Kruber, C. &
Sabarido-Rey, F. 2007. The effect of prestige oils ingestion on the growth and
chemical composition of turbot otoliths. Marine Pollution Bulletin 54:
1732-1741.
Payan, P., Kossmann, H., Watrin, A., Mayergostan, N. &
Boeuf, G. 1997. Ionic composition of endolymph in teleosts – origin and
importance of endolymph alkalinity. Journal of Experimental Marine Biology 200:
1905-1912.
Platt, C. & Popper, A.N. 1981. Fine structure and
function of the ear. In Hearing and Sound Communication in Fishes, edited
by Tavaloga, W.N., Popper, A.N. & Fay, R.R. New York. pp. 1-36.
Popper, A.N., Ramcharitar, J. & Campana, S.E. 2005. Why
otoliths? Insights from the inner ear physiology and fisheries biology. Marine
Freshwater Research 56: 497-504.
Popper, A.N. & Coombs, S. 1980. Auditory mechanisms in
teleost fishes. American Scientist 68: 429-440.
Por, F.D. 1972. Hydrobiological notes on the high-salinity
waters of the Sinai Peninsula. Marine Biology 14(2): 111-119.
Russel, D.J. & Garrett, R.N. 1983. Use by juvenile
barramundi, Lates calcarifer (Bloch) and other fishes of temporary
supralittoral habitats in a tropical estuary in northern Australia. Australian
Journal of Marine Freshwater Research 34: 805-811.
Secor, D.H. & Rooker, J.R. 2000. Is otolith strontium a
useful scalar of life cycles in estuarine fishes? Fisheries Research 46:
359-371.
Summerhayes, C.P. & Thorpe, S.A. 1996. Oceanography:
An Illustrated Guide. London: Manson Publishing Ltd.
Tzeng, W.N. & Tsai, Y.C. 1994. Changes in otolith
microchemistry of the Japanese eel, Anguilla japonica, during its
migration from the ocean to the river of Taiwan. Journal of Fish Biology 45:
1671-1683.
*Corresponding
author; email: carmohd@ukm.my
|