Sains Malaysiana 43(5)(2014): 757–766

 

Sr/Ca, Mg/Ca and Ba/Ca Ratios in the Otolith of Sea Bass in

Peninsular Malaysia as Salinity Influence Markers

(Nisbah Sr/Ca, Mg/Ca dan Ba/Ca dalam Otolit Ikan Siakap di Semenanjung Malaysia sebagai Penunjuk Pengaruh Saliniti)

 

AFIZA SURIANI SARIMIN & CHE ABD RAHIM MOHAMED*

School of Environmental and Natural Resource Sciences, Faculty of Science and Technology

Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia

 

Received: 20 January 2012/Accepted: 23 August 2013

 

ABSTRACT

The otoliths of sea bass (Lates calcarifer) were sampled from 23 locations in Peninsular Malaysia in order to analyse the Sr/Ca, Mg/Ca and Ba/Ca ratios. This study found that these elements/Ca ratios in sea bass otoliths correlated with the salinity zone (thalassic series) compared with elements/Ca ratios in ambient water. The contradictory pattern of Sr/Ca ratios and Ba/Ca ratios in otoliths were found according to salinity zone variations. Thus, oligohaline waters showed highest Ba/Ca ratios while the highest Sr/Ca ratios were recorded for saline waters. The terrigenous enrichment of Ba in water also affects the Ba content in otoliths. The presence of Mg in otoliths acts as a rival to Ba, thus affecting Mg and Ba deposition. Meanwhile, Ba is the tracer for salinity fluctuations based on the partition coefficient (D) and shows significant changes. However, the elements in otoliths were found to originate indirectly from the water column. The sequence of the elements/Ca ratios in otoliths and ambient water were as follows, Sr/Ca>Mg/Ca>Ba/Ca and Sr/Ca>Ba/Ca>Mg/Ca, respectively.

 

Keywords: Ba/Ca; Mg/Ca; Otolith; Sr/Ca; thalassic series

 

ABSTRAK

Sebanyak 23 lokasi di Semenanjung Malaysia telah dipilih untuk persampelan ikan siakap (Lates calcarifer). Otolit ikan siakap dianalisis untuk mendapatkan nisbah Sr/Ca, Mg/Ca dan Ba/Ca. Kajian ini mendapati nisbah elemen/Ca dalam otolit mempunyai korelasi dengan saliniti berbanding nisbah elemen/Ca dalam air ambien. Nisbah Sr/Ca dalam otolit didapati bertentangan dengan nisbah Ba/Ca dalam otolit dan berubah mengikut saliniti. Oleh itu, nisbah Ba/Ca dalam otolit adalah tinggi dalam air oligohalin manakala nisbah Sr/Ca dalam otolit adalah tinggi dalam air masin. Pengkayaan unsur Ba dalam air ambien mempengaruhi kandungan Ba dalam otolit. Manakala, kehadiran Mg dalam otolit adalah pesaing kepada Ba lalu mempengaruhi pengenapan Ba pada otolit. Unsur Ba merupakan penyurih berdasarkan pekali sekatan (D) menunjukkan perubahan yang signifikan. Walau bagaimanapun, sumber elemen dalam otolit adalah daripada pengaruh air ambien. Turutan nisbah elemen/Ca dalam otolit dan air ambien didapati masing-masing adalah Sr/Ca>Mg/Ca>Ba/Ca dan Sr/Ca>Ba/Ca>Mg/Ca.

 

Kata kunci: Ba/Ca; Mg/Ca; otolit; Sr/Ca; siri talasik

REFERENCES

 

Afiza Suriani, S., Mazlan, A.G. & Mohamed, C.A.R. 2009a. Variation of Ca, Sr, Ba and Mg in the otolith of giant mudskipper in west coast of Peninsular Malaysia. Pakistan Biological Journal of Science 12(3): 231-238.

Afiza Suriani, S., Noorliza, Z. & Mohamed, C.A.R. 2009b. Kepekatan unsur makro dan surih dalam otolit, isi ikan siakap dan air laut di Sedili Kechil. In Seminar Penyelidikan Pantai Timur: Mersing Warisan Terpelihara. Mersing, 28-29 March, Malaysia.

Arai, T., Ikemoto, T., Kunito, T., Tanabe, S. & Miyazaki, N. 2002. Otolith microchemistry of the conger eel, Conger myriaster. Journal of the Marine Biological Association of the United Kingdom 82: 303-305.

Arai, T. & Miyazaki, N. 2001. Use of otolith microchemistry to estimate the miratory history of the Russian sturgeon, Acipenser guldenstadti. Journal of the Marine Biological Association of the United Kingdom 81: 709-710.

Blaber, S.J.M. 2000. Tropical Estuarine Fishes. Ecology, Exploitation and Conservation. Fish Aqua. Res. Ser., 7. Blackwell Science. pp. 129-140.

Campana, S.E. & Tzeng, W.N. 2000. Section 4: Otolith composition. Fisheries Research 46: 287-288.

Campana, S.E. 1999. Chemistry and compositions of fish otoliths: Pathways, mechanism and applications. Marine Ecology Progress Series 188: 263-297.

Campana, S.E. & Neilson, J.D. 1985. Microstructure of fish otoliths. Canadian Journal of Fisheries and Aquatic Science 42: 1014-1032.

Degens, E.T., Deuser, W.G. & Haedrich, R.L. 1969. Molecular structure and composition of fish otoliths. International Journal of Life Oceans and Coastal Waters 2: 105-113.

de Vries, M.C., Gillanders, M.B. & Elsdon, T.S. 2005. Facilitation of barium uptake into otoliths: Influence of strontium concentration and salinity. Geochimica Cosmochimica Acta 69: 4061-4072.

DOF (Department of Fisheries). 2007. Fisheries Annual Statistical Vol 1., Putrajaya, p. 185.

Dwyer, K.S., Stephen, J.W. & Campana, S.E. 2003. Age determination, validation and growth of Grand Bank yellowtail flounder (Limanda ferriginea). ICES Journal of Marine Science 60: 1123-1138.

Elsdon, T.S. & Gillanders, B.M. 2003a. Reconstructing migratory patterns of fish based on environmental influences on otolith chemistry. Fish Biology and Fisheries 13: 219-235.

Elsdon, T.S. & Gillanders, B.M. 2003b. Relationship between water and otolith elemental concentrations in juvenile black bream Acanthopagrus butcheri. Marine Ecology Progress Series 260: 263-272.

Farrell, J. & Campana, S.E. 1996. Regulation of calcium and strontium deposition on the otoliths of juvenile tilapia, Oreochromis niloticus. Comparative Biochemistry and Physiology 115A(2): 103-109.

Gauldie, R.W., West, I.F. & Coote, G.E. 1995. Evaluating otolith age estimates for Holosthertus atlanticus by comparing patterns of checks, cycle in microincrement width, and cycles in strontium and calcium composition. Bulletin of Marine Science 56: 76-102.

Gillanders, B.M. 2005. Using elemental chemistry of fish otoliths to determine connectivity between estuarine and coastal habitats. Estuarine Coastal Shelf Science 64: 47-57.

Grandcourt, E.M., Al Abdessalaam, T.Z. & Francis, F. 2006. Age, growth, mortality and reproduction of the blackspot snapper, Lutjanus fulviflamma (Forsskäl, 1775), in the southern Arabian Gulf Fisheries Research 78: 203-210.

Grey, D.L. 1987. An overview of Lates calcarifer in Australia and Asia. In Management of Wild and Cultured Sea Bass Barramundi Lates calcarifer, edited by Copland, J.W. ACIAR Proceeding 20: 15-21.

Hamer, P.A., Jenkins, G.P. & Coutin, P. 2006. Barium variation in Pagrus auratus (Sparidae) otoliths: A potential indicator of migration between an embayment and ocean waters in south-eastern Australia. Estuarine Coastal and Shelf Science 68: 686-702.

Kafemann, R., Adlerstein, S.M. & Neukamm, R. 2000. Variation in otolith strontium and calcium artios as an indicator of life-histories strategies of freshwater species within a brackish water system. Fisheries Research 46: 313-325.

Leakey, C.D.B., Attrill, M.J. & Fitzsimons, M.F. 2009. Multi-element otolith chemistry of juvenile sole (Solea solea), whiting (Merlangius merlangus) and European seabass (Dicentrarchus labrax) in the Thames estuary and adjacent coastal regions. Journal of Sea Research 61(4): 268-274.

Lin, S.H., Chang, C.W., Iizuka, Y. & Tzeng, W.N. 2007. Salinities, not diet, affects strontium/calcium ratios in otoliths of Anguilla japonica. Journal of Experimental Marine Biology and Ecology 341: 254-263.

Kumar, A.R. & Riyazuddin, P. 2009. Comparative study of analytical methods for the determination of chromium in groundwater samples containing iron. Microchemical Journal 93(2): 236-241.

Miller, B.M., Clough, A.M., Batson, J.H. & Vachet, R.W. 2006. Transition metal binding to cod otolith proteins. Journal of Experimental Marine Biology and Ecology 329: 135-143.

Milton, D.A. & Chenery, S.R. 2001. Sources and uptakes of trace metals in otoliths of juvenile barramundi (Lates calcarifer). Journal of Experimental Marine Biology and Ecology 264: 47-65.

Moore, R. 1979. Natural sex invasion in the giant sea perch (Lates calcarifer). Australian Journal of Marine and Freshwater Research 30: 803-813.

Morales-Nin, B., Geffen, A.J., Cardona, F., Kruber, C. & Sabarido-Rey, F. 2007. The effect of prestige oils ingestion on the growth and chemical composition of turbot otoliths. Marine Pollution Bulletin 54: 1732-1741.

Payan, P., Kossmann, H., Watrin, A., Mayergostan, N. & Boeuf, G. 1997. Ionic composition of endolymph in teleosts – origin and importance of endolymph alkalinity. Journal of Experimental Marine Biology 200: 1905-1912.

Platt, C. & Popper, A.N. 1981. Fine structure and function of the ear. In Hearing and Sound Communication in Fishes, edited by Tavaloga, W.N., Popper, A.N. & Fay, R.R. New York. pp. 1-36.

Popper, A.N., Ramcharitar, J. & Campana, S.E. 2005. Why otoliths? Insights from the inner ear physiology and fisheries biology. Marine Freshwater Research 56: 497-504.

Popper, A.N. & Coombs, S. 1980. Auditory mechanisms in teleost fishes. American Scientist 68: 429-440.

Por, F.D. 1972. Hydrobiological notes on the high-salinity waters of the Sinai Peninsula. Marine Biology 14(2): 111-119.

Russel, D.J. & Garrett, R.N. 1983. Use by juvenile barramundi, Lates calcarifer (Bloch) and other fishes of temporary supralittoral habitats in a tropical estuary in northern Australia. Australian Journal of Marine Freshwater Research 34: 805-811.

Secor, D.H. & Rooker, J.R. 2000. Is otolith strontium a useful scalar of life cycles in estuarine fishes? Fisheries Research 46: 359-371.

Summerhayes, C.P. & Thorpe, S.A. 1996. Oceanography: An Illustrated Guide. London: Manson Publishing Ltd.

Tzeng, W.N. & Tsai, Y.C. 1994. Changes in otolith microchemistry of the Japanese eel, Anguilla japonica, during its migration from the ocean to the river of Taiwan. Journal of Fish Biology 45: 1671-1683.

 

 

*Corresponding author; email: carmohd@ukm.my

 

 

previous