Sains Malaysiana 43(6)(2014): 941–945

 

Synthesis of Iron Oxide (Fe3O4) Magnetic Nanocrystals by Green Chemistry Approach

(Sintesis Nanohablur Magnetik Ferum Oksida (Fe3O4) dengan Pendekatan Kimia Hijau)

 

W.S. Chiu1*, S.X. Too1, S.N.H. Daud1, N.M.A. Rashid1, M.Y. Chia1, S.A. Rahman1, A. Suhaimi Bakar1, Z. Aspanut1, P.S. Khiew2, T.K. Tan2, S. Radiman3, R. Abd-Shukor3, M.A.A. Hamid3& C.H. Chia3

 

1Low Dimensional Materials Research Centre, Department of Physics, Faculty of Science, University of Malaya, 50603 Lembah Pantai, Kuala Lumpur, Malaysia

 

2Faculty of Engineering, University of Nottingham Malaysia Campus, 43500 Semenyih, Selangor, Malaysia

 

3School of Applied Physics, Faculty of Science & Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia

 

Received: 3 May 2013/Accepted: 15 December 2013

 

ABSTRACT

In the present study, we report the size distribution study on the iron oxide (Fe3O4) magnetic nanocrystals (NCs), which have been synthesized by using green chemistry approach with palm-oil based carboxylic compound (oleic acid) as capping ligands. The Fe3O4 NCs were prepared by one pot reaction under non-hydrolytic approach. With the assistance of oleic acid that plays the role as effective capping-ligands, we showed that the Fe3O4 NCs that are highly monodispersed in size and shape can be synthesized by scrupulously controlling the reaction time. The diameter of Fe3O4 NCs can be tuned within the range of 4.0-18.0 nm and exhibit very uniform morphology, which are spherical in shape. Current synthetic approach offers a cheap, environmentally benign and excellent repeatability route in large-scale production of high-quality magnetic Fe3O4 NCs if compared to the preceding reports.

 

Keywords: Fe3O4; iron oxide; magnetic; nanocrystals; synthesis

 

ABSTRAK

Dalam penyelidikan ini, kami mengkaji taburan saiz ferum oksida (Fe3O4) nanohablur (NH) magnet yang disintesis dengan pendekatan kimia hijau dengan minyak kelapa sawit daripada kumpulan karboksilik (asid oleik) sebagai ligan. Fe3O4 NH disediakan dengan menggunakan tindak balas tunggal dalam keadaan tanpa akueus. Dengan adanya asid oleik yang berperanan sebagai ligan berkesan, kami menunjukkan bahawa Fe3O4 NH yang mempunyai saiz dan bentuk sekata dapat disediakan dengan mengawal tempoh masa tindak balas. Diameter Fe3O4 dapat dikawal dalam julat 4.0-18.0 nm dan menunjukkan morfologi saiz yang sekata, iaitu berbentuk sfera. Pendekatan sintesis ini telah menyediakan satu cara yang murah, mesra-alam dan kebolehulangan untuk penghasilan Fe3O4 NH magnet yang berkualiti tinggi secara besar-besaran berbanding laporan sebelum ini.

 

Kata kunci: Ferum oksida; Fe3O4; magnet; nanohablur;  sintesis

 

REFERENCES

Chiu, W.S., Khiew, P.S., Cloke, M., Isa, D., Tan, T.K., Radiman, S., Abd-Shukor, R., Hamid, M.A.A., Huang, N.M., Lim, H.N. & Chia, C.H.   2010.   Photocatalytic study of two-dimensional Zno nanopellets in the decomposition of methylene Blue.  Chemical Engineering Journal  158: 345-352.

Chiu, W.S., Khiew, P.S., Isa, D., Cloke, M., Radiman, S., Abd-Shukor, R., Abdullah, M.H. & Huang, N.M.   2008.   Synthesis of two-dimensional Zno nanopellets by pyrolysis of zinc oleate.  Chemical Engineering Journal  142(3): 337-343.

Chiu, W.S., Radiman, S., Abdullah, M.H., Khiew, P.S., Huang, N.M. & Abd-Shukor, R.   2007.   One pot synthesis of monodisperse Fe3O4 nanocrystals by pyrolysis reaction of organometallic compound.  Materials Chemistry and Physics 106(2-3): 231-235.

Jana, N.R., Chen, Y.F. & Peng, X.G.   2004.   Size- and shape-controlled magnetic (Cr, Mn, Fe, Co, Ni) oxide nanocrystals via a simple and general approach.  Chemistry of Materials  16(20): 3931-3935.

Murray, C.B., Kagan, C.R. & Bawendi, M.G.   2000.   Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies.  Annual Review of Materials Science  30: 545-610.

Murray, C.B., Norris, D.J. & Bawendi, M.G.   1993.   Synthesis and characterization of nearly monodisperse Cde (E = Sulfur, Selenium, Tellurium) semiconductor nanocrystallites.  Journal of the American Chemical Society  115(19): 8706-8715.

Peng, X.G., Wickham, J. & Alivisatos, A.P.   1998.   Kinetics of Ii-Vi and Iii-V colloidal semiconductor nanocrystal growth: ‘Focusing’ of size distributions.  Journal of the American Chemical Society 120(21): 5343-5344.

Reiss, H. 1951.   The growth of uniform colloidal dispersions.  Journal of Chemical Physics  19(4): 482-487.

Sugimoto, T. 1987.   Preparation of monodispersed colloidal particles.  Advances in Colloid and Interface Science 28: 65-108.

Yu, W.W. & Peng, X.G.   2002.   Formation of high-quality Cds and other Ii-Vi semiconductor nanocrystals in noncoordinating solvents: Tunable reactivity of monomers.  Angewandte Chemie-International Edition  41(13): 2368-2371.

 

*Corresponding author; email: w.s.chiu@um.edu.my

 

 

previous