Sains Malaysiana 43(7)(2014):1069–1075

 

Effect of High Temperature Corrosion on

Austenitic Stainless Steel Grade 304 in CO2 Gas at 700ºC

(Kesan Kakisan Suhu Tinggi Terhadap Keluli Tahan Karat Austenit Gred 304 Dalam Persekitaran Gas CO2 Pada Suhu 700oC )

 

NURUL ATIKAH SHARIFF, AZMAN JALAR, MUHAMAD IZHAR SAHRI & NORINSAN KAMIL OTHMAN*

School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia

43600 Bangi, Selangor, Malaysia

 

Received: 27 March 2013/Accepted: 24 February 2014

 

ABSTRACT

Austenitic stainless steels of grade 304 were exposed to dry (Ar-75%CO2) and wet (Ar-75%CO2-12% H2O) environments at 700oC. This experimental setup involved horizontal tube furnace connected to CO2 gas and water vapour facilities. X-ray diffraction (XRD) technique, variable pressure-scanning electron microscope (VP-SEM) and optical microscope techniques were used to characterize the products of corrosion. The results of XRD showed that the phase of oxide layers consists of Cr2O3 and NiCr2O4 in dry CO2, meanwhile Fe2O3, Cr2O3, Fe0.56Ni0.34, Fe3O4 were identified in wet condition after 50 h. Adding 12% H2O in Ar-75%CO2 leads significantly in weight change occurred at 10 h exposure. However, after 20 h, the weight gain was decreased due to spallation of the oxide scale. The addition of water vapour accelerates the oxidation rate on the steel than that in dry condition. Morphologies and growth kinetics of these oxides vary with reaction condition. The oxidation behaviour at different times of exposure and the effect of water vapour were discussed in correlation with the microstructure of the oxides.

 

Keywords: Austenitic stainless steel; oxidation; water vapour

 

ABSTRAK

Keluli tahan karat Austenit gred 304 telah didedahkan dalam persekitaran kering (Ar-75% CO2) dan basah (Ar-75% CO2-12%  H2O) pada suhu 700oC. Kajian ini telah menggunakan relau melintang yang dilengkapi dengan aliran gas CO2 dan kemudahan penghasilan wap air. Teknik pembelauan sinar-X (XRD), mikroskop elektron imbasan pelbagai tekanan (VP-SEM) dan mikroskopi optik (OM) telah digunakan untuk pencirian hasil produk kakisan. Hasil keputusan XRD menunjukkan fasa lapisan oksida Cr2O3 dan NiCr2O4 terbentuk dalam persekitaran kering CO2, sementara itu Fe2O3, Cr2O3, Fe0.56Ni0.34, Fe3O4 telah dikenal pasti dalam persekitaran basah selepas 50 jam pendedahan. Penambahan 12% H2O dalam Ar-75% CO2 membawa kepada perubahan berat yang ketara pada pendedahan selama 10 jam. Walau bagaimanapun, selepas 20 jam, pertambahan berat menurun disebabkan oleh pengelupasan lapisan oksida. Kehadiran wap air mempercepat kadar pengoksidaan terhadap keluli berbanding dalam keadaan kering. Morfologi dan pertumbuhan kinetik lapisan oksida adalah berbeza mengikut keadaan tindak balas. Perilaku pengoksidaan pada masa pendedahan yang berbeza dan kesan wap air telah dibincangkan dengan menghubungkait mikrostruktur oksida.

 

Kata kunci: Keluli tahan karat Austenit; pengoksidaan; wap air

 

REFERENCES

Chia, H.C. & Wen, T.T. 2009. Carburization behavior under the pits induced by metal dusting in 304L and 347 stainless steels. Materials Chemistry and Physics 116: 426-432.

Francis, J.M. 1966. Influence of minor alloying elements on structure of surface oxides formed during high-temperature oxidation of austenitic steel. Journal of the Iron and Steel Institute 204: 910.

Freund, H.J. & Robert, M.W. 1996. Surface chemistry of carbon dioxide. Surface Science Reports 25: 225-273.

Fujii, C.T. & Meussner, R.A. 1964. The mechanism of the high temperature oxidation of iron-chromium alloys in water vapour. Journal of the Electrochemical Society 111(11): 1215-1221.

Grabke, H.J. 1998. Carburization: A high temperature corrosion phenomenon. USA: Materials Technology Institute of the Chemical Process Industries.

Huenert, D., Schulz, W. & Kranzmann, A. 2008. Corrosion of steels in H2O-CO2 atmospheres at temperatures between 500°C and 700°C. Berlin, Germany: Federal Institute of Materials Research and Testing.

Ikeda, Y. & Nii, K. 1984. Mechanism of accelerated oxidation of Fe-Cr alloys in water vapour containing atmosphere. Transaction of National Research Institute of Metals 26(1): 52-62.

Ishak, H.M., Amin, M.M. & Derman, M.N. 2008. Effect of temperature on corrosion behaviour of AISI 304 stainless steel with magnesium carbonate deposit. Journal of Physical Science 19(2): 137-141.

Kofstad, P. 1988. High Temperature Corrosion. London: Elsevier Applied Science.

Kumar, V., Arora, N. & Singh, S. 2011. Effect of cyclic oxidation behaviour of German steel and austenitic stainless steel. MIT International Journal of Mechanical Engineering 1(2): 79-83.

Liu, L., Zhao, C. & Li, Y. 2012. Spontaneous dissociation of CO2 to CO on defective surface of Cu(I)/TiO2 nanoparticles at room temperature. The Journal of Physical Chemistry 116(14): 7904-7912.

Mikkelsen, L. & Linderoth, S. 2003. High temperature oxidation of Fe-Cr alloy in O2-H2-H2O atmospheres: Microstructure and kinetics. Material Science Engineering A 361(10): 198-212.

Othman, N.K., Othman, N. & Zhang, J. 2010. Water vapour effect of cyclic oxidation on Fe-Cr alloys. Sains Malaysiana39(2): 249-259.

Polman, E.A., Fransen, T. & Gellings, P.J. 1989. Oxidation kinetics of chromium and morphological phenomena. Oxidation of Metals 32: 1989.

Rouillard, F., Cabet, C., Wolski, K. & Pijolat, M. 2009. Oxidation of a chromia-forming nickel base alloy at high temperature in mixed diluted CO/H2O atmospheres. Corrosion Science 51(4): 752-760.

Rujisomnapa, Patharaporn Seechompoo, Porntip Suwannachoat, Sanguanwong Suebca & Pornwasa Wongpanya. 2010. High temperature oxidation behaviour of low carbon steel and austenitic stainless steel. Journal of Metals, Materials and Minerals 20(3): 31-36.

Szakalos, P., Pettersson, R. & Hertzman, S. 2002. An active corrosion mechanism for metal dusting on 304L stainless steel. Corrosion Science 44: 2253-2270.

TMI Society. 2008. Austenitic Stainless Steels. Ohio, USA: ASM International.

Wuchina, E., Opila, E., Fergus, J., Maruyama, T. & Shifler, D. 2009. High Temperature Corrosion and Materials Chemistry. Pennington, USA: The Electrochemistry Society.

Young, D.J. & Watson, S. 1995. High-temperature corrosion in mixed gas environments. Oxidation of Metals 44(1-2): 163-190.

Young, D. 2008. High Temperature Oxidation and Corrosion of Metals. Amsterdam, Netherlands: Elsevier.

 

 

*Corresponding author; email: insan@ukm.edu.my

 

 

previous