Sains Malaysiana 43(7)(2014):1069–1075
Effect of High Temperature Corrosion on
Austenitic Stainless Steel Grade 304 in CO2 Gas at 700ºC
(Kesan Kakisan
Suhu Tinggi
Terhadap Keluli Tahan Karat Austenit Gred 304 Dalam Persekitaran Gas CO2 Pada
Suhu 700oC
)
NURUL ATIKAH SHARIFF, AZMAN JALAR, MUHAMAD IZHAR SAHRI & NORINSAN KAMIL OTHMAN*
School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia
43600 Bangi, Selangor, Malaysia
Received: 27 March 2013/Accepted: 24 February 2014
ABSTRACT
Austenitic stainless steels of grade 304 were exposed to dry (Ar-75%CO2)
and wet (Ar-75%CO2-12% H2O) environments at
700oC.
This experimental setup involved horizontal tube furnace connected
to CO2 gas
and water vapour facilities. X-ray diffraction
(XRD)
technique, variable pressure-scanning electron microscope (VP-SEM) and optical microscope
techniques were used to characterize the products of corrosion.
The results of XRD
showed that the phase of oxide layers consists of
Cr2O3 and
NiCr2O4 in
dry CO2,
meanwhile Fe2O3, Cr2O3,
Fe0.56Ni0.34,
Fe3O4 were
identified in wet condition after 50 h. Adding 12% H2O in Ar-75%CO2 leads
significantly in weight change occurred at 10 h exposure. However,
after 20 h, the weight gain was decreased due to spallation of the
oxide scale. The addition of water vapour
accelerates the oxidation rate on the steel than that in dry condition.
Morphologies and growth kinetics of these oxides vary with reaction
condition. The oxidation behaviour at
different times of exposure and the effect of water vapour
were discussed in correlation with the microstructure of the oxides.
Keywords: Austenitic stainless steel; oxidation; water vapour
ABSTRAK
Keluli tahan karat Austenit gred 304 telah didedahkan dalam persekitaran kering (Ar-75% CO2) dan basah (Ar-75% CO2-12% H2O) pada suhu 700oC. Kajian ini telah menggunakan
relau melintang
yang dilengkapi dengan aliran gas CO2 dan kemudahan penghasilan wap air. Teknik pembelauan sinar-X
(XRD),
mikroskop elektron imbasan pelbagai
tekanan (VP-SEM)
dan mikroskopi
optik (OM) telah digunakan untuk pencirian hasil produk kakisan. Hasil keputusan XRD menunjukkan
fasa lapisan
oksida Cr2O3 dan
NiCr2O4 terbentuk dalam persekitaran kering CO2,
sementara itu
Fe2O3,
Cr2O3,
Fe0.56Ni0.34,
Fe3O4 telah dikenal pasti
dalam persekitaran
basah selepas 50 jam pendedahan. Penambahan 12% H2O dalam Ar-75%
CO2 membawa kepada perubahan berat yang ketara pada pendedahan
selama 10 jam. Walau bagaimanapun,
selepas 20 jam, pertambahan
berat menurun
disebabkan oleh pengelupasan lapisan oksida. Kehadiran wap air mempercepat kadar pengoksidaan
terhadap keluli
berbanding dalam keadaan kering. Morfologi
dan pertumbuhan kinetik lapisan oksida adalah berbeza
mengikut keadaan
tindak balas. Perilaku
pengoksidaan pada masa pendedahan yang berbeza dan kesan wap
air telah dibincangkan dengan menghubungkait mikrostruktur
oksida.
Kata kunci: Keluli tahan karat Austenit; pengoksidaan; wap air
REFERENCES
Chia, H.C. & Wen, T.T.
2009. Carburization
behavior under the pits induced by metal dusting in 304L and 347 stainless
steels. Materials Chemistry and Physics 116: 426-432.
Francis, J.M. 1966. Influence of minor alloying
elements on structure of surface oxides formed during high-temperature
oxidation of austenitic steel. Journal of the Iron and Steel Institute 204:
910.
Freund, H.J. & Robert, M.W. 1996. Surface chemistry of carbon dioxide. Surface Science
Reports 25: 225-273.
Fujii, C.T. & Meussner,
R.A. 1964. The mechanism of the high temperature oxidation of
iron-chromium alloys in water vapour. Journal
of the Electrochemical Society 111(11): 1215-1221.
Grabke, H.J. 1998. Carburization: A high temperature
corrosion phenomenon. USA: Materials Technology Institute of
the Chemical Process Industries.
Huenert, D., Schulz, W. & Kranzmann, A. 2008. Corrosion of steels in H2O-CO2 atmospheres
at temperatures between 500°C and 700°C. Berlin, Germany: Federal Institute of
Materials Research and Testing.
Ikeda, Y. & Nii,
K. 1984. Mechanism of accelerated oxidation of Fe-Cr alloys in water vapour containing atmosphere. Transaction of National
Research Institute of Metals 26(1): 52-62.
Ishak, H.M., Amin, M.M. & Derman,
M.N. 2008. Effect of temperature on corrosion behaviour of AISI 304 stainless steel with magnesium
carbonate deposit. Journal of Physical Science 19(2):
137-141.
Kofstad, P. 1988. High Temperature
Corrosion. London: Elsevier Applied Science.
Kumar, V., Arora, N. & Singh, S. 2011. Effect of cyclic oxidation behaviour of
German steel and austenitic stainless steel. MIT International
Journal of Mechanical Engineering 1(2): 79-83.
Liu, L., Zhao, C. & Li, Y. 2012. Spontaneous
dissociation of CO2 to CO on defective surface of Cu(I)/TiO2 nanoparticles at room temperature. The
Journal of Physical Chemistry 116(14): 7904-7912.
Mikkelsen, L. & Linderoth, S. 2003. High
temperature oxidation of Fe-Cr alloy in O2-H2-H2O
atmospheres: Microstructure and kinetics. Material Science Engineering A 361(10):
198-212.
Othman, N.K., Othman, N. & Zhang,
J. 2010. Water vapour effect of cyclic oxidation on Fe-Cr alloys. Sains Malaysiana39(2): 249-259.
Polman, E.A., Fransen, T. & Gellings, P.J. 1989. Oxidation kinetics
of chromium and morphological phenomena. Oxidation of Metals 32:
1989.
Rouillard, F., Cabet,
C., Wolski, K. & Pijolat,
M. 2009. Oxidation of a chromia-forming
nickel base alloy at high temperature in mixed diluted CO/H2O atmospheres. Corrosion
Science 51(4): 752-760.
Rujisomnapa, Patharaporn Seechompoo, Porntip Suwannachoat, Sanguanwong Suebca & Pornwasa Wongpanya. 2010.
High temperature oxidation behaviour of low carbon
steel and austenitic stainless steel. Journal of Metals, Materials and
Minerals 20(3): 31-36.
Szakalos, P., Pettersson, R. & Hertzman, S. 2002. An active corrosion
mechanism for metal dusting on 304L stainless steel. Corrosion
Science 44: 2253-2270.
TMI Society. 2008. Austenitic Stainless Steels. Ohio,
USA: ASM International.
Wuchina, E., Opila,
E., Fergus, J., Maruyama, T. & Shifler, D. 2009. High Temperature Corrosion and Materials Chemistry. Pennington,
USA: The Electrochemistry Society.
Young, D.J. & Watson, S. 1995. High-temperature
corrosion in mixed gas environments. Oxidation of Metals 44(1-2):
163-190.
Young, D. 2008. High Temperature Oxidation and Corrosion
of Metals. Amsterdam, Netherlands: Elsevier.
*Corresponding
author; email: insan@ukm.edu.my
|