Sains Malaysiana 43(7)(2014):
1105–1108
Rational Finite Difference Approximation of High Order Accuracy
for
Nonlinear
Two Point Boundary Value Problems
(Penghampiran Beza Terhingga Rasional Ketepatan Peringkat Tinggi untuk Masalah Nilai
Dua Titik Sempadan Tak Linear)
P.K. PANDEY*
Department of
Mathematics, College of Applied Sciences, PB No.
1905, PC 211, Salalah
Sultanate of Oman
Department of Mathematics,
Dyal Singh College (Univ. of Delhi), Lodhi Road,
New Delhi - 110003,
India
Received: 16 May 2013/Accepted:
16 September 2013
ABSTRACT
In this paper, we present a new method
for solving nonlinear general two point boundary value problems.
A method based on finite differences and rational function approximation
and we call this method as rational approximation method. A rational
approximation method is applied to construct the numerical solution
for two point boundary value problems. The novel method is tested
on three model problems. Thus the numerical results obtained for
these model problems show the performance and efficiency of the
developed method.
Keywords: Boundary value problems; fourth-order
method; rational approximation
ABSTRAK
Dalam kertas ini,
kami memberikan kaedah
baru bagi menyelesaikan masalah nilai dua
titik sempadan
tak linear umum. Kaedah berdasarkan beza terhingga dan penghampiran
fungsi rasional
ini dikenali sebagai
kaedah penghampiran
rasional. Kaedah penghampiran rasional
yang digunakan untuk
membina penyelesaian berangka bagi masalah
dua titik
sempadan. Kaedah baru ini
diuji pada tiga
model masalah. Oleh itu
keputusan berangka yang diperoleh bagi masalah model ini menunjukkan prestasi dan keberkesanan kaedah yang dibangunkan.
Kata kunci: Kaedah peringkat empat; masalah nilai sempadan; penghampiran rasional
REFERENCES
Baxley, J.V. 1981. Nonlinear Two Point Boundary Value Problems. In Ordinary
and Partial Differential Equations, edited by Everrit,
W.N. & Sleeman, B.D. New
York: Springer- Verlag. pp. 46-54.
Chawla, M.M. 1978. High-accuracy tridiagonal finite
difference approximation for nonlinear two point boundary value problems. J. Inst. Maths. Applics22:
203- 209.
Collatz, L. 1966. The Numerical Treatment of Differential Equations. New York: Springer- Verlag.
Jain, M.K. 1984. Numerical
Solution of Differential Equations (2/e). New Delhi: Wiley Eastern Limited.
Jain,
M.K., Iyenger, S.R.K. & Jain, R.K. 1987. Numerical
Methods for Scientific and Engineering Computation (2/e). New
Delhi: Wiley Eastern Ltd.
Keller, H.B. 1968. Numerical Methods for Two Point Boundary Value Problems. Waltham, Mass.: Blasdell Publ. Co.
Lambert,
J.D. 1991. Numerical Methods for Ordinary Differential Systems. England: John Wiley.
Mickens, R.E. 1994. Nonstandard Finite Difference Models of Differential Equations. Singapore: World Scientific.
Okosun, K.O. & Ademiluyi, R.A. 2007. A three step rational methods for
integration of differential equations with singularities. Research Journal
of Applied Sciences 2(1): 84-88.
Pandey, P.K. 2013. A non-classical finite difference method for solving two point
boundary value problems. Pacific Journal of Science and Technology 14(2):
147-152.
Ramos, H. 2007. A nonstandard explicit integration scheme for initial value
problems. Applied Mathematics and Computation 189(1): 710-718.
Stoer, J. & Bulirsch, R. 1991. Introduction to
Numerical Analysis (2/e). Berlin Heidelberg: Springer-Verlag.
Tirmizi, I.A. & Twizel, E.H. 2002. High order finite difference methods for
nonlinear second order two point boundary value problems. Appl. Math. Lett. 15: 897-902.
Ying, T.Y. & Yaacob, N. 2013. One-step exponential-rational methods for
the numerical solution of first order initial value problems. Sains Malaysiana42(6):
845-853.
*Corresponding author; email:
pramod_10p@hotmail.com
|