Sains Malaysiana 43(7)(2014): 995–1002

 

Optimization of Extraction and Physicochemical Properties of Gelatin from

Pangasius Catfish (Pangasius sutchi) Skin

(Pengoptimuman Pengekstrakkan dan Ciri Fizikomia Gelatin daripada Kulit Ikan Keli Pangasius (Pangasius sutchi)

 

FATEMEH MAHMOODANI, VENUS SANAEI ARDEKANI, SEE SIAU FERN,

SALMA MOHAMAD YUSOP* & ABDUL SALAM BABJI

Food Science Program, School of Chemical Sciences and Food Technology,

Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia

 

Received: 19 October 2011/Accepted: 9 September 2013

 

ABSTRACT

In order to optimize the extraction of gelatin from pangasius catfish skin, a response surface method (RSM) involving a Central Composite Design (CCD) was applied. Four variables, namely NaOH concentration (0-0.3 N), acetic acid concentration (0.025-0.125 N), extraction time (2-4 h) and extraction temperature (40-80°C) were selected as independent variables for the optimization using RSM. The dependent variable was calculated by hydroxyproline recovery. The optimum conditions for extraction were produced by a pre-treatment of 0.2 N NaOH and 0.1 N acetic acid along with hot water extraction at 63.7°C for 2.41 h. The results showed that the predicted response by RSM (68.53%) closely matched the experimental response of 68.16%. The results indicated that the extracted gelatin possessed high gel strength (438 g) and high content of imino acid (proline and hydroxyproline) (18.01%) with a viscosity of 4.67 mPa s. The results showed that RSM was a great optimizing tool for extraction of gelatin from pangasius catfish skin. The gelatin was also proven to have significantly (p<0.05) higher quality of physicochemical properties than those from bovine skin gelatin.

 

Keywords: Gelatin; optimization; pangasius catfish; physicochemical properties; response surface method

 

ABSTRAK

Kaedah Permukaan Respons (RSM) yang melibatkan reka bentuk komposit tengah (CCD) telah digunakan untuk mengoptimumkan pengeluaran gelatin daripada kulit ikan keli pangasius. Empat parameter, iaitu kepekatan NaOH (0-0.3N), kepekatan asid asetik (0.025-0.125N), masa pengekstrakan (2-4 jam) dan pengekstrakan suhu (40-80°C) telah dipilih sebagai parameter tidak bersandar untuk tujuan ini. Parameter bersandar diukur melalui pemulihan hidroksiprolin. Keadaan optimum bagi pengekstrakan diperoleh dengan pra-perlakuan NaOH 0.2 N dan 0.1 N asid asetik dan pengekstrakan dengan menggunakan air panas pada suhu 63.7°C selama 2.41 jam. Keputusan menunjukkan bahawa respons yang diramalkan oleh RSM (68.53%) menghampiri nilai uji kaji, iaitu 68.16%. Keputusan menunjukkan ekstrak gelatin mempunyai kekuatan gel (438 g) dan mengandungi asid imino yang tinggi (prolin dan hidroksiprolin) (18.01%) dengan nilai kelikatan 4.67 mPa s. Ini menunjukkan bahawa RSM adalah kaedah yang efisien digunakan untuk mengoptimumkan pengeluaran gelatin daripada kulit ikan keli pangasius. Gelatin daripada kulit ikan keli juga telah terbukti mempunyai kualiti fizik-kimia yang lebih tinggi secara signifikan (p<0.05) berbanding gelatin daripada kulit lembu.

 

Kata kunci: Ciri fizikokimia; gelatin; ikan keli pangasius; kaedah permukaan respons; pengoptimuman

 

REFERENCES

 

AOAC International. 2005. Official Methods of Analysis of AOAC International. 17th ed. Gaithersburg, MD, USA: Association of Analytical Communities.

Arnesen, J.A. & Gildberg, A. 2007. Extraction and characterisation of gelatine from Atlantic salmon (Salmo salar) skin. Bioresource Technology 98: 53-57.

Binsi, P.K., Shamasundar, B.A., Dileep, A.O., Badii, F. & Howell, N.K. 2009. Rheological and functional properties of gelatin from the skin of Bigeye snapper (Priacanthus hamrur) fish: Influence of gelatin on the gel forming ability of fish mince. Food Hydrocolloids 23: 132-145.

BSI (British Standards Institution). 1975. Methods for Sampling and Testing Gelatin (Physical and Chemical Methods). London: BSI.

Cheow, C.S., Norizah, M.S., Kyaw, Z.Y. & Howell, N.K. 2007. Preparation and characterisation of gelatins from the skins of sin croaker (Johnius dussumieri) and shortfin scad (Decapterus macrosoma). Food Chemistry 101: 386-391.

Cho, S.M., Gu, Y.S. & Kim, S.B. 2005. Extracting optimization and physical properties of yellowfin tuna (Thunnus albacares) skin gelatin compared to mammalian gelatins. Food Hydrocolloids 19: 221-229.

Choi, S.S. & Regenstein, J.M. 2000. Physicochemical and sensory characteristics of fish gelatine. Journal of Food Science 65: 194-199.

Department of Fisheries Malaysia. 2007. Estimated aquaculture production from freshwater culture system by species. http://www.dof.gov.my/c/document_library/get_ file?uuid=07ab7a5d-908b-4c15 9927-874ff729490e&grou pId=10131.

Gilsenan, P.M. & Ross-Murphy, S.B. 2000. Rheological characterisation of gelatins from mammalian and marine sources. Food Hydrocolloids 12: 191-195.

Gómez-Guillén, M.C., Giménez, B., López-Caballero, M.E. & Montero, M.P. 2011. Functional and bioactive properties of collagen and gelatin from alternative sources: A review. Food Hydrocolloids 25(8): 1813-1827.

Gómez-Guillén, M.C., Pérez-Mateos, M., Gómez-Estaca, J., López-Caballero, E., Giménez, B. & Montero, P. 2009. Fish gelatin: A renewable material for the development of active biodegradable films. Trends in Food Science and Technology 20: 3-16.

Gómez-Guillén, M.C., Turnay, J., Fernández-Díaz, M.D., Ulmo, N., Lizarbe, M.A. & Montero, P. 2002. Structural and physical properties of gelatin extracted from different marine species. Food Hydrocolloids 16: 25-34.

Jamilah, B. & Harvinder, K.G. 2002. Properties of gelatins from skins of fish-black tilapia (Oreochromis mossambicus) and red tilapia (Oreochromis nilotica). Food Chemistry 77: 81-84.

Jones, N.R. 1977. Uses of gelatin in edible products. In The Science and Technology of Gelatins, edited by Ward, A.G. & Courts, A. New York: Academic Press. pp. 365-394.

Karim, A.A. & Bhat, R. 2008. Fish gelatin: Properties, challenges, and prospects as an alternative to mammalian gelatins. Food Hydrocolloids 23: 563-576.

Montero, P. & Gómez-Guillén, M.C. 2000. Extracting conditions for megrim (Lepidorhombus boscii) skin collagen affect functional properties of the resulting gelatin. Journal of Food Science 65: 434-438.

Muyonga, J., Cole, C. & Duodu, K. 2004. Extraction and physico-chemical characterisation of Nile perch (Lates niloticus) skin and bone gelatin. Food Chemistry 86: 325-332.

Myers, R.H. & Montgomery, D.C. 2002. Response Surface Methodology. New York: John Wiley & Sons Inc. p. 798.

Pye, J. 1996. Gelatin - the scientific approach to product quality. Food Australia 48: 414-416.

Schrieber, R. & Gareis, H. 2007. Gelatine Handbook: Theory and Industrial Practice. Germany: Wiley-VCH.

See, S.F., Hong, P.K., Ng, K.L., Wan Aida, W.M. & Babji, A.S. 2010. Physicochemical properties of gelatins extracted from skins of different freshwater fish species. International Food Research Journal 17: 809-816.

Yang, H., Wang, Y., Jiang, M., Oh, J.H., Herring, J. & Zhou, P. 2007. 2-Step optimization of the extraction and subsequent physical properties of channel catfish (Ictalurus punctatus) skin gelatin. Journal of Food Science 72: 188-195.

Zhou, P., Mulvaney, S.J. & Regenstein, J.M. 2006. Properties of Alaskan pollock skin gelatin: A comparison with Tilapia and pork skin gelatins. Journal of Food Science 71: 313-321.

Zhou, P. & Regenstein, J.M. 2005. Effects of alkali and acid pretreatments on Alaska pollock skin gelatin extraction. Journal of Food Science 70: 392-396.

Zhou, P. & Regenstein, J.M. 2004. Optimization of extraction conditions for Pollock skin gelatin. Journal of Food Science 69: 393-398.

 

 

*Corresponding author; email: salma_my@ukm.edu.my

 

 

previous