Sains Malaysiana 43(8)(2014): 1259-1262
A Third Order Nakashima Type Implicit Pseudo Runge-Kutta Method
for Delay Differential Equations
(Kaedah Runge-Kutta
Nakashima Jenis 'Pseudo' Bertahap
Tiga untuk
Persamaan Perbezaan Lengah)
Lim
Tian Hwee*
Foundation in Business, University of Reading Malaysia,
Level 7, Menara Kotaraya, Jalan Trus
80000 Johor Bahru, Johor, Malaysia
Received: 24 July 2012/Accepted: 6 November 2013
ABSTRACT
A third order Nakashima type
implicit Pseudo Runge-Kutta method is presented. The
free parameter was determined by minimizing the error bound. The stability
region of the method was presented. Some problems on delay differential
equations are tested to compare the accuracy of the proposed method with third
order RADAU I.
Keywords:
Delay differential equations; implicit pseudo Runge-Kutta method; third order
ABSTRAK
Satu kaedah Runge-Kutta Nakashima tersirat jenis “pseudo” bertahap tiga telah diterbitkan. Parameter bebas telah ditentukan dengan meminimumkan batas ralat. Rantau kestabilan kaedah tersebut juga dipersembahkan. Beberapa soalan persamaan pembezaan lengah telah diuji untuk dibanding kejituan kaedah yang diteerbitkan dengan RADAU I bertahab tiga.
Kata kunci: Bertahap tiga; kaedah Runge-Kutta jenis 'pseudo' tersirat; persamaan perbezaan lengah
REFERENCES
Bellen, A. & Zennaro,
M. 2003. Numerical Methods for Delay
Differential Equations. Oxford: Clarendon Press.
Karoui, A. 1992. On the numerical solution of delay
differential equations. Master Thesis. University of Ottawa, Ontario
(Unpublished).
Ismail, F., Al-Khasawneh, R.A., Aung, S.L.
& Suleiman, M. 2002. Numerical treatment of delay differential equations by Runge-Kutta method using Hermite interpolation. Matematika UTM 18(2): 79-90.
Lotkin, M. 1951. On the accuracy of Runge-Kutta methods. Mathematical Tables and
Other Aids to Computation 5(35): 128-133.
Nakashima, M. 1982. On Pseudo-Runge-Kutta Methods with 2 and 3 stages. Publ.
RIMS, Kyoto Univ. 18: 895-909.
Orbele, H.J. & Pesch,
H.J. 1981. Numerical treatment of delay differential equations by Hermite interpolation. Numer. Math. 31: 235-255.
Ralston,
A. 1962. Runge-Kutta methods with minimum error bounds. Math.
Comp. 16: 431-437.
Shintani, H. 1981. On pseudo-Runge-Kutta Methods of the third
kind. Hiroshima Math. J. 11:
247-254.
Yaacob, N., Sabri, A.A.,
Samsudin, N. & Lim, T.H. 2011. Application
of Nakashima's 2 stages 4thorder Pseudo-Runge-Kutta method and 3 stages 5th order Pseudo-Runge-Kutta Method to Delay
Problems. UTM Technical Report, LT/M BIL.6/2011.
*Corresponding
author; email: t.h.lim@reading.ac.uk
|