Sains Malaysiana 43(8)(2014): 1275-1281

 

On -Quadratic Stochastic Operators on 2-D Simplex

(-Quadratik Stochastic Pengendali Di Simplex 2-D)

 

Farrukh Mukhamedov*, Izzat Qaralleh & Wan Nur Fairuz Alwani bt Wan Rozali

Department of Computational & Theoretical Sciences, Faculty of Science, International Islamic University Malaysia, P.O. Box, 141, 25710, Kuantan, Pahang, Malaysia

 

Received: 1 July 2013/Accepted: 17 October 2013

 

 

Abstract

 

A quadratic stochastic operator (QSO) is usually used to present the time evolution of differing species in biology. Some quadratic stochastic operators have been studied by Lotka and Volterra. The general problem in the nonlinear operator theory is to study the behavior of operators. This problem was not fully finished even for quadratic stochastic operators which are the simplest nonlinear operators.

problem, several classes of QSO were investigated. In this paper, we study the –QSO defined on 2D simplex. We first classify –QSO into 2 non-conjugate classes. Further, we investigate the dynamics of these classes of such operators. 

 

Keywords: Fixed point; quadratic stochastic operator

 

ABSTRAK

Pengendali stokastik kuadratik (QSO) biasanya digunakan untuk menunjukkan evolusi masa berbeza spesies dalam biologi. Sesetengah pengendali stokastik kuadratik telah dikaji oleh Lotka dan Volterra. Masalah umum dalam teori tak linear pengendali adalah untuk mengkaji tingkah laku pembekal. Masalah ini tidak sepenuhnya siap untuk pengendali stokastik kuadratik yang merupakan pengendali tak linear yang paling mudah. Untuk memahami masalah ini, beberapa kelas QSO telah dikaji. Dalam kertas ini, kami mengkaji – QSO yang ditentukan pada simpleks 2D. Kami mengklasifikasikan – QSO ke dalam kelas bukan konjugat. Seterusnya, kami mengkaji kedinamikan kelas pengusaha terbabit.

Kata kunci: Pengendali stokastik kuadratik; titik tetap

 

REFERENCES

 

Bernstein, S. 1942. Solution of a mathematical problem connected with the theory of heredity.  Annals of Math. Statis. 13: 53-61.

Ganikhodzhaev, R.N. 1994. A chart of fixed points and Lyapunov functions for a class of discrete dynamical systems. Math. Notes.  56: 1125-1131.

Ganikhodzhaev, R., Mukhamedov, F. & Rozikov, U. 2011. Quadratic stochastic operators and processes: Results and open problems. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 14: 270-335.

Hofbauer, J., Hutson, V. & Jansen, W. 1987. Coexistence for systems governed by difference equations of Lotka-Volterra type. Jour. Math. Biology 25: 553-570.

Hofbauer, J. & Sigmund, K. 1988. The Theory of Evolution and Dynamical Systems. Mathematical Aspects of Selection Cambridge: Cambridge Univ. Press.

Jenks, R.D. 1969. Quadratic differential systems for interactive population models. Jour. Diff.            Eqs  5: 497-514.

Kesten, H. 1970. Quadratic transformations: A model for population growth.I, II, Adv. Appl .Probab. 2: 1-82, 179-228.

Li, S-T., Li, D-M. & Qu, G-K. 2006. On stability and chaos of discrete population model for a single-species with harvesting. Jour. Harbin Univ. Sci. Tech.  6: 021.

Lotka, A.J. 1920. Undamped oscillations derived from the law of mass action. J. Amer. Chem. Soc. 42: 1595-1599.

Lyubich Yu. I. 1992. Mathematical Structures in Population Genetics. Springer-Verlag,

Mukhamedov, F., & Jamal, A.H.M. 2010. On -quadratic stochastic operators in 2-dimensional simplex, In Proc. the 6th IMT-GT Conf. Math., Statistics and its Applications (ICMSA2010), 3-4 November. Kuala Lumpur: Universiti Tunku Abdul Rahman. pp. 159-172.

Mukhamedov, F. & Saburov, M. 2010. On homotopy of volterrian quadratic stochastic operator. Appl. Math. & Inform. Sci. 4: 47-62.

Mukhamedov, F., Saburov, M. & Jamal, A.H.M. 2012. On dynamics of -quadratic stochastic operators. Inter. Jour. Modern Phys.: Conference Series 9: 299-307.

Mukhamedov F., Saburov M., Qaralleh I., On -Quadratic stochastic operators on two dimensional simplex and their behavior. Abst. Appl. Anal. (in press).

Mukhamedov, F., Saburov, M. & Qaralleh, I. 2013. Classification of -Quadratic stochastic operators on 2D simplex. J. Phys.: Conf. Ser. 435: 012003.

Plank, M. & Losert, V. 1995. Hamiltonian structures for the n-dimensional Lotka-Volterra equations, J. Math. Phys.  36: 3520-3543.

Rozikov, U.A. & Zada, A. 2010. On - Volterra quadratic stochastic operators. Inter. Journal Biomath. 3: 143-159.

Stein, P.R. & Ulam, S.M. 1962. Non-linear Transformation Studies on Electronic Computers.            N. Mex.: Los Alamos Scientific Lab.

Udwadia, F.E. & Raju, N. 1998. Some global properties of a pair of coupled maps: quasisymmetry, periodicity and syncronicity. Physica D 111: 16-26.

Ulam, S.M. 1964. Problems in Modern Math. New York: Wiley.

Volterra, V. 1927. Lois de fluctuation de la population de plusieurs espèces coexistant dans le même milieu. Association Franc. Lyon 1926: 96-98.

Zakharevich, M.I. 1978. The behavior of trajectories and the ergodic hypothesis for quadratic mappings of a simplex. Russian Math. Surveys 33: 207-208.

 

 

*Corresponding author; email: farrukh_m@iium.edu.my