Sains Malaysiana 43(8)(2014): 1275-1281
On -Quadratic
Stochastic Operators on 2-D Simplex
(-Quadratik Stochastic Pengendali Di Simplex 2-D)
Farrukh Mukhamedov*, Izzat Qaralleh & Wan Nur Fairuz Alwani bt Wan Rozali
Department of Computational & Theoretical Sciences,
Faculty of Science, International Islamic University Malaysia, P.O. Box, 141,
25710, Kuantan, Pahang, Malaysia
Received: 1 July 2013/Accepted: 17 October 2013
Abstract
A quadratic stochastic operator (QSO) is
usually used to present the time evolution of differing species
in biology. Some quadratic stochastic operators have been studied
by Lotka and Volterra.
The general problem in the nonlinear operator theory is to study
the behavior of operators. This problem was not fully finished even
for quadratic stochastic operators which are the simplest nonlinear
operators.
problem, several classes of QSO were investigated.
In this paper, we study the –QSO
defined on 2D simplex. We first classify
–QSO into 2 non-conjugate
classes. Further, we investigate the dynamics of these classes of
such operators.
Keywords: Fixed point;
quadratic stochastic operator
ABSTRAK
Pengendali stokastik kuadratik (QSO) biasanya digunakan
untuk menunjukkan evolusi masa berbeza spesies dalam biologi. Sesetengah
pengendali stokastik kuadratik telah dikaji oleh Lotka dan Volterra.
Masalah umum dalam teori tak linear pengendali adalah untuk mengkaji
tingkah laku pembekal. Masalah ini tidak sepenuhnya siap untuk pengendali
stokastik kuadratik yang merupakan pengendali tak linear yang paling
mudah. Untuk memahami masalah ini, beberapa kelas QSO telah dikaji.
Dalam kertas ini, kami mengkaji – QSO yang ditentukan pada simpleks 2D. Kami mengklasifikasikan – QSO ke
dalam kelas bukan konjugat. Seterusnya, kami mengkaji kedinamikan
kelas pengusaha terbabit.
Kata kunci: Pengendali stokastik
kuadratik; titik tetap
REFERENCES
Bernstein, S. 1942. Solution of a mathematical problem
connected with the theory of heredity. Annals of Math.
Statis. 13: 53-61.
Ganikhodzhaev, R.N. 1994. A chart of fixed points and Lyapunov functions for a class of discrete dynamical systems.
Math. Notes. 56:
1125-1131.
Ganikhodzhaev, R., Mukhamedov,
F. & Rozikov, U. 2011. Quadratic stochastic operators and processes: Results
and open problems. Infin. Dimens.
Anal. Quantum Probab. Relat. Top. 14:
270-335.
Hofbauer, J., Hutson, V. & Jansen,
W. 1987. Coexistence for systems governed by difference equations
of Lotka-Volterra type. Jour. Math. Biology 25: 553-570.
Hofbauer, J. & Sigmund, K. 1988. The
Theory of Evolution and Dynamical Systems. Mathematical
Aspects of Selection Cambridge: Cambridge Univ. Press.
Jenks, R.D. 1969. Quadratic differential
systems for interactive population models. Jour. Diff.
Eqs 5: 497-514.
Kesten, H. 1970. Quadratic transformations: A model for population
growth.I, II, Adv. Appl
.Probab. 2: 1-82, 179-228.
Li, S-T., Li, D-M. & Qu,
G-K. 2006. On stability and chaos of discrete population model for
a single-species with harvesting. Jour. Harbin Univ. Sci. Tech. 6: 021.
Lotka, A.J. 1920. Undamped oscillations
derived from the law of mass action. J. Amer. Chem. Soc.
42: 1595-1599.
Lyubich Yu. I. 1992. Mathematical Structures
in Population Genetics. Springer-Verlag,
Mukhamedov, F., & Jamal, A.H.M. 2010. On -quadratic
stochastic operators in 2-dimensional simplex, In Proc. the 6th
IMT-GT Conf. Math., Statistics and its
Applications (ICMSA2010),
3-4 November. Kuala Lumpur: Universiti
Tunku Abdul Rahman. pp. 159-172.
Mukhamedov, F. & Saburov,
M. 2010. On
homotopy of volterrian quadratic
stochastic operator. Appl. Math. & Inform. Sci.
4: 47-62.
Mukhamedov, F., Saburov,
M. & Jamal, A.H.M. 2012.
On dynamics of -quadratic
stochastic operators. Inter. Jour. Modern Phys.: Conference
Series 9: 299-307.
Mukhamedov F., Saburov M., Qaralleh I., On -Quadratic
stochastic operators on two dimensional simplex and their behavior.
Abst. Appl. Anal. (in
press).
Mukhamedov, F., Saburov,
M. & Qaralleh, I. 2013. Classification of -Quadratic
stochastic operators on 2D simplex. J. Phys.: Conf. Ser.
435: 012003.
Plank, M. & Losert, V.
1995. Hamiltonian structures for the n-dimensional
Lotka-Volterra equations, J. Math. Phys. 36: 3520-3543.
Rozikov, U.A. & Zada, A. 2010.
On - Volterra
quadratic stochastic operators. Inter.
Journal Biomath. 3:
143-159.
Stein, P.R. & Ulam, S.M.
1962. Non-linear Transformation Studies on
Electronic Computers.
N. Mex.: Los Alamos Scientific Lab.
Udwadia, F.E. & Raju, N. 1998. Some global properties of
a pair of coupled maps: quasisymmetry,
periodicity and syncronicity. Physica
D 111: 16-26.
Ulam, S.M. 1964. Problems in Modern
Math. New York: Wiley.
Volterra, V. 1927. Lois de fluctuation de la population
de plusieurs espèces
coexistant dans
le même milieu. Association Franc. Lyon
1926: 96-98.
Zakharevich, M.I. 1978. The behavior of trajectories
and the ergodic hypothesis for quadratic
mappings of a simplex. Russian Math. Surveys 33: 207-208.
*Corresponding
author; email: farrukh_m@iium.edu.my
|