Sains Malaysiana 43(9)(2014): 1295–1304
Antidiabetic Activity of Aqueous Extract of Leptospermum
flavescens
in Alloxan Induced Diabetic Rats
(Aktiviti Antidiabetik Ekstrak Akues Leptospermum flavescens dalam
Tikus Diinduksi Aloksan)
ASMAWATI ABD RAHIM, JAMALUDIN MOHAMAD*
& ZAZALI ALIAS
Institute
of Biological Sciences, Faculty of Science, University of Malaya
50603
Kuala Lumpur, Malaysia
Received:
28 December 2012/Accepted: 28 January 2014
ABSTRACT
Leptospermum
flavescens, commonly known as ‘Gelam bukit’ has been used by the Malays as
traditional plants in Malaysia for antidiabetic treatment. However, at this
moment there is no scientific evidence and data available to validate such
claim. In the present study, the aqueous extract of leaves and stems were
studied for its antidiabetic activity. The total phenols and flavonoids were
determined and correlated with antidiabetic activity. The detection of aqueous
leaves extract with LCMS/MS showed the presence of
flavonoids aromadendrin glucoside, kaempferol rhamnoside, quercetin rhamnoside
and vindoline. The extract has significantly inhibited glycogen phosphorylase
at 85% with IC50 =
0.18 mg/mL. In the alloxan induced diabetic rats showed that extract at 500
mg/kg decreased significantly fasting plasma glucose level by 61.9% (p<0.001)
on the 20th day as compared to diabetic control. The treatment
with Leptospermum flavescens at 500 mg/kg showed that it decreased the
total cholesterol and triglycerides but restored the HDL level.
The high antidiabetic activity was correlated with high total phenol at
1.57±0.01 GAE/g and total flavonoids at 1.41±0.01 mg QE/g.
Thus, the high antidiabetic activity of the aqueous leaves extract attributed
due to the presence of aromadendron glucoside, kaempferol rhamnoside, quercetin
rhamnoside and vindoline in aqueous extract of Leptospermum flavescens.
Keywords:
Antidiabetics; flavonoids; glycogen phosphorylase; Leptospermum
flavescens; phenols
ABSTRAK
Leptospermum
flavescens yang lazimnya dikenali sebagai Gelam bukit telah digunakan oleh
orang Melayu dalam perubatan tradisi untuk rawatan diabetes. Walau
bagaimanapun, pada masa ini tiada bukti saintifik dan data tersedia untuk
mengesahkan dakwaan tersebut. Dalam kajian ini, ekstrak akues daun dan batang
dikaji untuk aktiviti antidiabetiknya. Jumlah fenol dan flavonoid ditentukan
dan berkorelasi dengan aktiviti antidiabetik. Pengesanan ekstrak akues daun
dengan LCMS/MS menunjukan kehadiran flavonoid glikosida
aromadendrin, kaempferol rhamnoside, quercetin rhamnoside dan vindoline.
Ekstrak mempunyai rencatan signifikan glikogen fosforilase pada 85% dengan IC50 =
0.18 mg/mL. Di dalam tikus induksi diabetik aloksan menunjukkan ekstrak pada
500 mg/kg signifikan menurunkan paras glukosa plasma puasa sebanyak 61.9% (p<0.001)
pada hari ke 20 berbanding dengan kumpulan kawalan. Perlakuan dengan Leptospermum
flavescens pada 500 mg/kg menunjukkan penurunan jumlah kolesterol dan
trigliserida tetapi mengekalkan paras HDL. Aktiviti antidiabetik yang
tinggi berkorelasi dengan jumlah fenol pada 1.57±0.01 GAE/g
dan jumlah flavonoid pada 1.41±0.01 mg QE/g. Maka, aktiviti
antidiabetik yang tinggi ekstrak akues daun adalah disebabkan kehadiran
glikosida aromadendron, kaempferol rhamnoside, quercetin rhamnoside dan
vindoline di dalam ekstrak akues Leptospermum flavescens.
Kata kunci:
Antidiabetik; fenol; flavonoids; glikogen fosforilase; Leptospermum
flavescens
REFERENCES
Ahmed,
I., Adequate, E., Cummings, E., Sharma, A.K. & Singh, J. 2004. Beneficial
effects and mechanism of action of Momordica
charantia juice in the treatment of streptozotocin-induced diabetes
mellitus in rat. Molecular Cell Biochemistry 261: 63-70.
Asano,
N. 2003. Glycosidase inhibitors: Update and perspectives on practical use. Glycobiology 13: 93R-104R.
Atta-Ur-Rhemann
& Khurshid Zaman. 1989. Medicinal plants with hypoglycemic activity. Journal
of Ethnopharmacology 26: 1-55.
Bailey,
C.J. 1992. Biguanides and NIDDM. Diabetes Care 15: 755-772.
Barnett,
D., Craig, J.G., Robinson, D.S. & Perenna Rogers, M. 1977. Effect of
clofibrate on glucose tolerance in maturity onset diabetes. British Journal
of Clinicallogy Pharmacology 4: 455-458.
Benwahhoud,
M., Jouad, H., Eddouks, M. & Lyoussi, B. 2001. Hypoglycemic effect of Suaeda fruticosa in
streptozotocin-induced diabetic rats. Journal of Ethnopharmacology 76:
35-38.
Buse,
J., Hart, K. & Minasi, L. 1998. The PROTECT study: Final results of a large
multicentre postmarketing study in patients with type 2 diabetes. Precose resolution
of optimal titration to enhance current therapies. Clinical Therapeutic 20:
257-269.
Chakravarthy,
B.K., Gupta, S., Gambir, S.S. & Gode, K.D. 1980. Pancreatic beta cell
regeneration. A novel antidiabetic mechanism of Pterocarpus marsupium Roxb. Indian Journal of Pharmacology 12: 123-127.
Chattopadhyay,
R.R., Banerjee, R.N., Sarkar, S.K., Ganguly, S. & Basu, T.K. 1992.
Anti-inflammatory and acute toxicity studies with leaves of Vinca rosea Linn.
in experimental animals. Indian Journal of Physiology Pharmacology 36:
291-292.
Chattopadhyay,
R.R., Sarkar, S.K., Ganguly, S., Banerjee, R.N. & Basu, T.K. 1991.
Hypoglycemic and antihyperglycemic effects of leaves of Vinca rosea Linn. Indian Journal of Physiology Pharmacology 35: 145-151.
Chattopadhyay,
R.R. 1999. A comparative evaluation of some blood sugar lowering agents of
plant origin. Journal of Ethanopharmacology 67: 367-372.
Chen,
Y., Gong, M., Zhang, C., Song, Y. & Yu, P. 2010. Determination of
aromadendrin in Euonymus alatus by HPLC. Zhongguo Zhong Yao Za Zhi 35(19):
2565-2567.
Day,
C. 1998. Traditional plant treatments for diabetes mellitus: pharmaceutical
foods. British Journal of Nutrition 80: 203- 208.
Del
Prato, S. & Pulizzi, N. 2006. The place of sulfonylureas in the therapy for
type 2 diabetes mellitus. Metabolism 55(1): S20-S27.
El
Hilaly, J. & Lyoussi, B. 2002. Hypoglycemic effect of the lyophilized
aqueous extract of Ajugaiva in normal and streptozotocin in diabetic rats. Journal
of Ethnopharmacology 80: 109-113.
Ghosh,
R.K. & Gupta, I. 1980. Effect of Vinca rosea and Ficus racemososus on huperglycemia in rats. Indian Journal Animal
Health 19: 145-148.
Hyun,
Y.K., Jeong, D.M., Jung, H.J., Jung, Y.J., Yokozawa, T. & Choi, J.S. 2008.
Hypolipidemic effects of Sophora
flavescens and its constituents in poloxamer 407-induced hyperlipidemic and
cholesterol-fed rats. Biological & Pharmaceutical Bulletin 31(1):
73-78.
Ivorra,
M.D., Paya, M. & Villar, A. 1989. A review of natural products and plants
as potent antidiabetic drugs. Journal of Ethnopharmacology 27(3):
243-275.
Jiyin
Zhou, Shiwen Zhou, Jianlin Tang, Kebin Zhang, Lixia Guang, Yongping Huang, Ying
Xu, Yi Ying, Le Zhang & Dandan Li. 2009. Protective effect of berberine on
beta cells in streptozotocin- and high-carbohydrate/high-fat diet-induced
diabetic rats. European Journal of Pharmacology 606(1-3): 262-268.
Kameswara
Roa, B., Giri, R., Kesavulu, M.M. & Appa Rao, Ch. 1997. Herbal medicine: In
the management of diabetis mellitus. Manphar Vaidhya Patrika 1(4): 33-
35.
Karunanayake,
E.H. & Tennekoon, K.H. 1993. Search of novel hypoglycemic agents from
medicinal plants. In Diabetes Mellitus and Its Complications: An
update, edited by Sharma A.K. New Delhi, India: Macmillan India Ltd.
Liu,
X., Dong, M., Chen, X., Jiang, M., Lv, X. & Yan, G. 2007. Antioxidant
activity and phenolics of endophytic Xylaria sp. From Ginkgo biloba.
Food Chemistry 105: 548-554.
Lu,
H., Chen, J., Li, W.L., Ren, B.R., Wu, J.L. & Zhang, H.Q. 2009.
Hypoglycemic effect of the total flavonoid fraction from Folium eriobotryae. Phytomedicine 16(10): 967-971.
Manickam,
M., Ramanathan, M., Farboodinay Jahromi, M.A., Chansouria, J.P.N. & Ray,
A.B. 1997. Antihyperglycemic activity of phenolics from Pterocarpus marsupium. Journal of Natural Products 60:
609-610.
Mankil,
J., Moonsoo, P., Hyun, C.L., Yoon-Ho, K., Eun, S.K. & Sang, K.K. 2006.
Antidiabetic agents from medicinal plants. Current Medicine Chemistry 13:
1203-1218.
Martin,
W.H., Hoover, D.J., Armento, S.J., Stock, I.A., McPherson, R.K., Danley, D.E.,
Stevenson, R.W., Barrett, E.J. & Treadway, J.L. 1998. Discovery of a human
glycogen phosphorylase inhibitor that lowers blood glucose in vivo. Proceeding
National. Academy of Science U.S.A 95: 1776e1781.
Min-Jia Tan, Ji-Ming Ye, Nigel Turner, Cordula Hohnen-
Behrens, Chang-Qiang Ke, Chun-Ping Tang, Tong Chen, Hans-Christoph Weiss,
Ernst-Rudolf Gesing, Alex Rowland, David E. James & Yang Ye. 2008.
Antidiabetic activities of triterpenoids isolated from bitter melon associated
with activation of the AMPK pathway. Chemistry & Biology 15(3):
263-273.
Moller,
D.E. 2001. New drug targets for type 2 diabetes and the metabolic syndrome. Nature 414: 821-827.
Obatomi,
D.K., Bikomo, E.O. & Temple, V.J. 1994. Anti-diabetic properties of the
African mistletoe in streptozotocin-induced diabetic rats. Journal of
Ethnopharmacol 43(1): 13-17.
Oikonomakos,
N.G. 2002. Glycogen phosphorylase as a molecular target for type 2 diabetes
therapy. Current Protein and Peptide Science 3: 561-586.
Oliver-Bener,
B. 1986. Medicinal Plants in Tropical
West Africa. London: Cambridge University Press. pp. 245-267.
Patel,
S.S., Shah, R.S. & Goyal, R.K. 2009. Antihyperglycemic, antihyperlipidemic
and antioxidant effects of Dihar, a polyherbal ayurvedic formulation in
streptozotocin induced diabetic rats. Indian Journal of Experimental Biology 47(7): 564-570.
Park,
K.W., Lee, J.E. & Park, K.M. 2009. Diets containing Sophora japonica L.
prevent weight gain in high-fat diet-induced obese mice. Nutrition Research 29(11):
819-824.
Prakash
R. Itankar, Sarika J. Lokhande, Prashant R. Verma, Sumit K. Arora, Rajesh A.
Sahu & Arun T. Patil. 2011. Antidiabetic potential of unripe Carissa carandas Linn. fruit extract. Journal
of Ethnopharmacology 135(2): 430-433.
Riley,
M. 1994. Maori Healing and Herbal. New Zealand Ethnobotanical
Sourcebook. Paraparaumu, New Zealand: Viking Sevenseas.
Rodriquez,
P., Gonzalez-Mujica, F., Bermudez, J. & Hasegawa, M. 2010. Inhibition of
glucose intestinal absorption by kaemferol 3-O-alpha-rhamnoside purified from Bauhinia
megalandra leaves. Fitoterapia 81(8): 1220-1223.
Ross,
S.A., Gulve, E.A. & Wang, M. 2004. Chemistry and biochemistry of Type 2
diabetes. ChemInform 35(21): no. doi: 10.1002/chin.200421298.
Salahuddin,
M. & Jalalpure, S.S. 2010. Antidiabetic activity of aqueous fruit extract
of Cucumis trigonus Roxb. in streptozotocin-induced-diabetic rats. Journal
of Ethnopharmacology 127(2): 565-567.
Sancheti,
S., Bafna, M. & Seo, S.Y. 2010. Antihyperglycemic, antihyperlipidemic, and
antioxidant effects of Chaenomeles
sinensis fruit extract in streptozotocin-induced diabetic rats. European
Food Research and Technology 231(3): 415-421.
Shankar,
M.B., Parikh, J.R., Geetha, M., Mehta, R.S. & Saluja, A.K. 2007. Anti-diabetic
activity of novel androstane derivatives from Syzygium cuminii Linn. Journal of Natural Remedies 7:214-219.
Shirwaikar,
A., Rajendran, K. & Barik, R. 2006. Effect of aqueous bark extract of Garuga pinnata Roxb. in
streptozotocin-nicotinamide induced type-II diabetes mellitus. Journal of
Ethnopharmacology 107(2): 285-290.
Spanos,
G.A. & Wrosltad, R.E. 1990. Influence of processing and storage on the
phenolic composition of Thompson seedless grape juice. Journal of
Agricultural & Food Chemistry 38: 1565-1571.
Wei
Yun Zhang, Jung-Jin Lee, In-Su Kim, Yohan Kim & Chang-Seon Myung. 2011.
Stimulation of glucose uptake and improvement of insulin resistance by
aromadendrin. Pharmacology 88: 266-274.
Yun,
H-Y., Park, H-C., Kang, W. & Kwon, K-I. 2006. Pharmacokinetic and
harmacodynamic modelling of the effects of glimepiride on insulin secretion and
glucose lowering in healthy humans. Journal of Clinical Pharmacy and
Therapeutics 31: 469-476.
Zhang,
J.H. & Cheng, Y.S. 2009. Studies on the lowering blood sugar substances
from agrimony. Zhong Yao Cai 32(10): 1537-1539.
Zimmet,
P., Alberti, K.G. & Shaw, J. 2001. Global and societal implications of the
diabetes epidemic. Nature 414(6865): 782-787.
*Corresponding
author; email: jamal@um.edu.my
|