Sains
Malaysiana 43(9)(2014): 1317–1326
Array
Comparative Genomic Hybridization Analysis Identified The Chromosomal
Aberrations and Putative Genes Involved in Prostate Tumorigenesis of Malaysian
Men
(Analisis Tatasusunan Perbandingan Genom Penghibridan dalam
Mengenal Pasti Aberasi Kromosom dan Gen Berkemungkinan Terlibat dalam
Tumorigenesis Prostat dalam Kalangan Lelaki di Malaysia)
NENNY NOORINA SAAID1, REENA RAHAYU MD ZIN1*, SITI AISHAH MD ALI1,
SHARIFAH NOOR AKMAL SYED HUSSAIN1, ZULKIFLI ZAINUDDIN2 & ZUBAIDAH ZAKARIA3
1Department
of Pathology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical
Centre
56000 Kuala Lumpur, Malaysia
2Department of
Surgery, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre
56000 Kuala Lumpur, Malaysia
3Hematology Units,
Cancer Research Centre, Institute for Medical Research
56000 Kuala Lumpur, Malaysia
Received:
31 July 2013/Accepted: 9 January 2014
ABSTRACT
The
identification of chromosomal aberrations in prostate cancer has been widely
studied with several known oncogenes and tumor suppressor genes have
successfully been discovered. The most frequent aberrations detected in western
population were losses in chromosome 5q, 6q, 8p, 13q, 16q, 17p, 18q and gains
of 7p/q and 8q. The purpose of this study was to determine the chromosomal
aberrations among Malaysian men of Southeast Asia population and discover those
potential genes within that chromosomal aberrant region. Thirty-six
formalin-fixed paraffin embedded specimens consist of eight organ-confined
prostate cancer cases, five with capsular invasion, 14 showed metastasis and
nine cases had no tumor stage recorded, were analyzed by array CGH technique. Chromosomal losses were frequently detected at 4q, 6q,
8p, 13q, 18q while gains at 7q, 11q, 12p, 16q and 17q. Gain of 16q24.3 was
statistically significant with tumor size. Gains of 6q25.1 and Xq12 as well as
losses of 3p13-p1.2 and 13q33.1-q33.3 were significantly correlated with
Gleason grade whereas 12p13.31 gain was associated with bone metastasis.
Several potential genes have also been found within that aberrant region which
is myopodin (4q26-q27), ROBO1 (3p13-p11.2), ERCC5 (13q33.1-q33.3) and CD9 (12p13.31), suggesting
that these genes may play a role in prostate cancer progression. The
chromosomal aberrations identified by array CGH analysis could provide important clues to discover potential
genes associated with prostate tumorigenesis of Malaysian men.
Keywords:
Array CGH; chromosomal
aberrations; prostate cancer; putative genes
ABSTRAK
Pengenalpastian
aberasi kromosom dalam kanser prostat telah dikaji secara meluas dengan
beberapa onkogen dan gen penindas tumor telah berjaya ditemui. Aberasi kromosom
yang paling kerap dikesan dalam kalangan penduduk barat ialah delesi pada
kromosom 5q, 6q, 8p, 13q, 16q, 17p, 18q dan amplifikasi pada kromosom 7p/q dan
8q. Tujuan kajian ini adalah untuk menentukan aberasi kromosom dalam kalangan
lelaki Malaysia di Asia Tenggara dan seterusnya mengenal pasti gen berpotensi
yang terkandung dalam kawasan kromosom yang mengalami aberasi. Sejumlah 36 blok
tisu spesimen kanser prostat yang diawet formalin dan terbenam dalam lilin
parafin, digunakan dalam kajian ini yang terdiri daripada 8 kes organ-terbatas
kanser prostat, 5 kes dengan kapsular invasif, 14 kes menunjukkan metastasis
manakala 9 kes tiada rekod peringkat tumor. Sampel dianalisis oleh teknik penghibridan
perbandingan genomik tatasusunan. Delesi kromosom lebih kerap dikesan pada 5q,
6q, 8p, 13q, 18q manakala amplifikasi pada 7q, 11q, 12p, 16q dan 17q.
Amplifikasi 16q24.3 menunjukkan hubungan yang signifikan dengan saiz tumor.
Amplifikasi 6q25.1 dan Xq12 serta delesi 3p13-p1.2 dan 13q33.1-q33.3 adalah
signifikan dengan gred tumor manakala amplifikasi 12p13.31 adalah signifikan
dengan metastasis ke bahagian tulang. Beberapa gen yang berpotensi juga telah
ditemui di dalam kawasan aberasi berkenaan termasuklah gen myopodin (4q26-S27), ROBO1 (3p13-p11.2), ERCC5 (13q33.1-q33.3) dan CD9 (12p13.31) yang
berkemungkinan berperanan penting dalam perkembangan kanser prostat. Aberasi
kromosom yang dikesan oleh teknik tatasusunan CGH memberi petunjuk penting terhadap penemuan gen berpotensi yang
berkemungkinan terlibat dalam tumorigenesis prostat pesakit Malaysia.
Kata kunci: Aberasi kromosom; gen yang berkemungkinan; kanser
prostat; tatasusunan CGH
REFERENCES
Andrews, W.D., Barber, M. & Parnavelas, J.G. 2007. Slit-Robo
interactions during cortical development. Journal of Anatomy 211:
188-198.
Berhane, N., Sobti, R.C. & Mahdi, S.A. 2012. DNA repair genes
polymorphism (XPG and XRCC1) and association of prostate cancer
in a north Indian population. Mol Biol Rep. 39: 2471-2479.
Brown, R.S.D., Edwards, J., Dogan, A., Payne, H., Harland, S.J.,
Bartlett, J.M.S. & Masters, J.R.W. 2002. Amplification of the androgen
receptor gene in bone metastases from hormone-refractory prostate cancer. J.
Pathol. 198: 237-244.
Bubendorf, L., Kononen, J., Koivisto, P., Schraml, P., Moch, H.,
Gasser, T.C., Willi, N., Mihatsch, M.J., Sauter, G. & Kallioniemi, O.P.
1999. Survey of gene amplifications during prostate cancer progression by
high-throughput fluorescence in situ hybridization on tissue
microarrays. Cancer Research 59(4): 803-806.
Diamandis, E.P. 1997. Clinical applications of tumor suppressor
genes and oncogenes in cancer. Clinica Chimica Acta 257(2): 157-180.
Fearon, E.R. & Vogelstein B. 1990. A genetic model for
Colorectal Tumorigenesis. Cell 61: 759-767.
Ferlay, J., Shin, H.R., Bray, F., Forman, D., Mathers, C. &
Parkin, D.M. 2010. Estimates of worldwide burden of cancer in 2008: GLOBOCAN
2008. Int. J. Cancer. 127: 2893-2917.
Fu, W., Bubendorf, L., Willi, N., Moch, H., Mihatsch, M.J.,
Sauter, G. & Gasser, T.C. 2000. Genetic changes in clinically
organ-confined prostate cancer by comparative genomic hybridization. Urology
56(5): 880-885.
Gelmann, E.P. 2008. Prostate molecular oncogenesis: Gene deletions
and somatic mutations. In Prostate Cancer: Signalling Networks, Genetics and
New Treatment Strategies, edited by Pestell, R.G. & Nevalainen, M.T.
USA: Humana Press. pp. 71-97.
Hashida, H., Takabayashi, A., Tokuhara, T., Hattori, N., Taki, T.,
Hasegawa, H., Satoh, S., Kobayashi, N., Yamaoka, Y. & Miyake, M. 2003. Clinical
significance of transmembrane 4 superfamily in colon cancer. British Journal
of Cancer 89(1): 158-167.
Hooker, S., Bonilla, C., Akereyeni, F., Ahaghotu, C. &
Kittles, R.A. 2007. NAT2 and NER genetic variants and sporadic
prostate cancer susceptibility in African-Americans. Prostate Cancer
Prostatic Dis. 11(4): 349-356.
Jing, L., Liu, L., Yu, Y.P., Dhir, R., Acquafondada, M.,
Landsittel, D., Cieply, K., Wells, A. & Luo, J.H. 2004. Expression of
myopodin induces suppression of tumor growth and metastasis. Am. J. Pathol.
164: 1799-1806.
Kasahara, K., Taguchi, T., Yamasaki, I., Kamada, M., Yuri, K.
& Shuin, T. 2002. Detection of genetic alterations in advanced prostate
cancer by comparative genomic hybridization. Cancer Genet Cytogenet.
137(1): 15-22.
Kiyohara, C. & Yoshimasu, K. 2007. Genetic polymorphisms in
the nucleotide excision repair pathway and lung cancer risk: A meta-analysis. Int.
J. Med. Sci. 4: 59-71.
Latil, A., Chêne, L., Cochant-Priollet, B., Mangin, P., Fournier,
G., Berthon, P. & Cussenot, O. 2003. Quantification of expression of
netrins, slits and their receptors in human prostate tumors. Int. J. Cancer.
103: 306-315.
Lengauer, C., Kinzler, K.W. & Vogelstein, B. 1998. Genetic
instabilities in human cancers. Nature 396: 643-649.
Lerman, M.I. & Minna, J.D. 2000. The 630-kb lung cancer
homozygous deletion region on human chromosome 3p21.3: Identification and
evaluation of the resident candidate tumor suppressor genes. The International
Lung Cancer Chromosome 3p21.3 Tumor Suppressor Gene Consortium. Cancer Res.
60: 6116-6133.
Lin, F., Yu, Y.P., Woods, J., Cieply, K., Gooding, B.,
Finkelstein, P., Dhir, R., Krill, D., Becich, M.J., Michalopoulos, G.,
Finkelstein, S. & Luo, J.H. 2001. Myopodin, a synaptopodin homologue, is
frequently deleted in invasive prostate cancers. Am. J. Pathol. 159:
1603-1612.
Ma, S., Liu, X., Geng, J.G. & Guo, S.W. 2010. Increased SLIT
immunoreactivity as a biomarker for recurrence in endometrial carcinoma. American
Journal of Obstetrics and Gynecology 202: 68e1-68e11.
Mhawech, P., Herrman, F., Coassin, M., Guillou, L. & Iselin,
C.E. 2003. Motility-related protein-1 (MRP-1/09) expression in urothelial
bladder carcinoma and its relation to tumor recurrence and progression. Cancer 98: 1649-1657.
Paris, P.L., Andaya, A., Fridlyand, J., Jain, A.N., Weinberg, V.,
Kowbel, D. 2004. Whole genome scanning identifies genotypes associated with
recurrence and metastasis in prostate tumors. Hum Mol Genet. 13(13):
1303-1313.
Ribeiro,
F.R., Henrique, R., Hektoen, M., Berg, M., Jerónimom, C. & Teixeira, M.R.
2006. Comparison of chromosomal and array-based comparative genomic
hybridization for the detection of genomic inbalances in primary prostate
carcinomas. Mol. Cancer 5: 33.
Ross, J.S., Sheehan, C., Hayner-Buchan, A.M., Ambros, R.A.,
Kallakury, B.V., Kaufman, R. Jr. 1997. Prognostic significance of HER-2/neu
gene amplification status by fluorescence in situ hybridizationof prostate
carcinoma. Cancer 79: 2162-2170.
Sanchez-Carbayo, M., Schwarz, K., Charytonowicz, E., CordonCardo,
C. & Mundel, P. 2003. Tumor suppressor role for myopodin in bladder cancer:
Loss of nuclear expression of myopodin is cellcycle dependent and predicts
clinical outcome. Oncogene 22: 5298-5305.
Sanyal, S., Festa, F., Sakano, S., Zhang, Z., Steineck, G. &
Norming, U. 2004. Polymorphisms in DNA repair and metabolic genes in bladder
cancer. Carcinogenesis 25: 729-734.
Saramäki, O.R., Porkka, K.P., Vessella, R.L. & Visakorpi, T.
2006. Genetic aberrations in prostate cancer by microarray analysis. Int. J.
Cancer 119(6): 1322-1329.
Sho, M., Adachi, M., Taki, T., Hashida, H., Konishi, T. &
Huang, C.L. 1998. Transmembrane 4 superfamily as a prognostic factor in
pancreatic cancer. International Journal of Cancer 79: 509-516.
Solinas-Toldo, S., Lampel, S., Stilgenbauer, S., Nickolenko, J.,
Benner, A., Döhner, H., Cremer, T. & Lichter, P. 1997. Matrix-based
comparative genomic hybridization: Biochips to screen for genomic imbalances. Genes
Chromosome Cancer 20: 399-407.
van Beers, E.H., Joosse, S.A., Ligtenberg, M.J., Fles, R.,
Hogervorst, F.B.L. & Verhoef, S. 2006. A multiplex PCR predictor for aCGH
success of FFPE samples. Br. J. Cancer 94(2): 333-337.
van Dekken, H., Paris, P.L., Albertson, D.G., Alers, J.C., Andaya,
A. & Kowbel, D. 2004. Evaluation of genetic patterns in different tumor
areas of intermediate-grade prostatic adenocarcinomas by high-resolution
genomic array analysis. Genes Chromosomes Cancer 39(3): 249-256.
Visakorpi, T., Kallioniemi, A.H., Syvänen, A.C., Hyytinen, E.R.,
Karhu, R. & Tammela, T. 1997. Genetic changes in primary and recurrent
prostate cancer by comparative genomic hybridization. Cancer Res. 55(2):
342-347.
Weins, A., Schwarz, K., Faul, C., Barisoni, L., Linke, W.A. &
Mundel, P. 2001. Differentiation- and stress-dependent nuclear cytoplasmic
redistribution of myopodin, a novel actin-bundling protein. J. Cell. Biol.
155: 393-404.
Yu, Y.P., Tseng, G.C. & Luo, J.H. 2006. Inactivation of myopodin expression associated with prostate cancer relapse. Urology 68:
578-582.
Zainal Ariffin, O. & Nor Saleha, I.T. 2011. National Cancer
Registry Report 2007. Malaysia Cancer Statistics-Data and Figure. Kuala
Lumpur: National Cancer Registry, Ministry of Health Malaysia.
Zvieriev, V., Wang, J.C. & Chevrette, M. 2005. Over-expression
of CD9 does not affect in vivo tumorigenic or metastatic properties of
human prostate cancer cells. Biochem. Biophys. Res. Commum. 337:
498-504.
*Corresponding
author; email: reenarahayu@ppukm.ukm.edu. my |