Sains Malaysiana 43(9)(2014): 1317–1326

 

Array Comparative Genomic Hybridization Analysis Identified The Chromosomal Aberrations and Putative Genes Involved in Prostate Tumorigenesis of Malaysian Men

(Analisis Tatasusunan Perbandingan Genom Penghibridan dalam Mengenal Pasti Aberasi Kromosom dan Gen Berkemungkinan Terlibat dalam Tumorigenesis Prostat dalam Kalangan Lelaki di Malaysia)

 

 

NENNY NOORINA SAAID1, REENA RAHAYU MD ZIN1*, SITI AISHAH MD ALI1,

SHARIFAH NOOR AKMAL SYED HUSSAIN1, ZULKIFLI ZAINUDDIN2 & ZUBAIDAH ZAKARIA3

 

1Department of Pathology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre

56000 Kuala Lumpur, Malaysia

 

2Department of Surgery, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre

56000 Kuala Lumpur, Malaysia

 

3Hematology Units, Cancer Research Centre, Institute for Medical Research

56000 Kuala Lumpur, Malaysia

 

Received: 31 July 2013/Accepted: 9 January 2014

 

 

ABSTRACT

The identification of chromosomal aberrations in prostate cancer has been widely studied with several known oncogenes and tumor suppressor genes have successfully been discovered. The most frequent aberrations detected in western population were losses in chromosome 5q, 6q, 8p, 13q, 16q, 17p, 18q and gains of 7p/q and 8q. The purpose of this study was to determine the chromosomal aberrations among Malaysian men of Southeast Asia population and discover those potential genes within that chromosomal aberrant region. Thirty-six formalin-fixed paraffin embedded specimens consist of eight organ-confined prostate cancer cases, five with capsular invasion, 14 showed metastasis and nine cases had no tumor stage recorded, were analyzed by array CGH technique. Chromosomal losses were frequently detected at 4q, 6q, 8p, 13q, 18q while gains at 7q, 11q, 12p, 16q and 17q. Gain of 16q24.3 was statistically significant with tumor size. Gains of 6q25.1 and Xq12 as well as losses of 3p13-p1.2 and 13q33.1-q33.3 were significantly correlated with Gleason grade whereas 12p13.31 gain was associated with bone metastasis. Several potential genes have also been found within that aberrant region which is myopodin (4q26-q27), ROBO1 (3p13-p11.2), ERCC5 (13q33.1-q33.3) and CD9 (12p13.31), suggesting that these genes may play a role in prostate cancer progression. The chromosomal aberrations identified by array CGH analysis could provide important clues to discover potential genes associated with prostate tumorigenesis of Malaysian men.

 

Keywords: Array CGH; chromosomal aberrations; prostate cancer; putative genes

 

ABSTRAK

Pengenalpastian aberasi kromosom dalam kanser prostat telah dikaji secara meluas dengan beberapa onkogen dan gen penindas tumor telah berjaya ditemui. Aberasi kromosom yang paling kerap dikesan dalam kalangan penduduk barat ialah delesi pada kromosom 5q, 6q, 8p, 13q, 16q, 17p, 18q dan amplifikasi pada kromosom 7p/q dan 8q. Tujuan kajian ini adalah untuk menentukan aberasi kromosom dalam kalangan lelaki Malaysia di Asia Tenggara dan seterusnya mengenal pasti gen berpotensi yang terkandung dalam kawasan kromosom yang mengalami aberasi. Sejumlah 36 blok tisu spesimen kanser prostat yang diawet formalin dan terbenam dalam lilin parafin, digunakan dalam kajian ini yang terdiri daripada 8 kes organ-terbatas kanser prostat, 5 kes dengan kapsular invasif, 14 kes menunjukkan metastasis manakala 9 kes tiada rekod peringkat tumor. Sampel dianalisis oleh teknik penghibridan perbandingan genomik tatasusunan. Delesi kromosom lebih kerap dikesan pada 5q, 6q, 8p, 13q, 18q manakala amplifikasi pada 7q, 11q, 12p, 16q dan 17q. Amplifikasi 16q24.3 menunjukkan hubungan yang signifikan dengan saiz tumor. Amplifikasi 6q25.1 dan Xq12 serta delesi 3p13-p1.2 dan 13q33.1-q33.3 adalah signifikan dengan gred tumor manakala amplifikasi 12p13.31 adalah signifikan dengan metastasis ke bahagian tulang. Beberapa gen yang berpotensi juga telah ditemui di dalam kawasan aberasi berkenaan termasuklah gen myopodin (4q26-S27), ROBO1 (3p13-p11.2), ERCC5 (13q33.1-q33.3) dan CD9 (12p13.31) yang berkemungkinan berperanan penting dalam perkembangan kanser prostat. Aberasi kromosom yang dikesan oleh teknik tatasusunan CGH memberi petunjuk penting terhadap penemuan gen berpotensi yang berkemungkinan terlibat dalam tumorigenesis prostat pesakit Malaysia.

 

Kata kunci: Aberasi kromosom; gen yang berkemungkinan; kanser prostat; tatasusunan CGH

 

 

REFERENCES

 

Andrews, W.D., Barber, M. & Parnavelas, J.G. 2007. Slit-Robo interactions during cortical development. Journal of Anatomy 211: 188-198.

Berhane, N., Sobti, R.C. & Mahdi, S.A. 2012. DNA repair genes polymorphism (XPG and XRCC1) and association of prostate cancer in a north Indian population. Mol Biol Rep. 39: 2471-2479.

Brown, R.S.D., Edwards, J., Dogan, A., Payne, H., Harland, S.J., Bartlett, J.M.S. & Masters, J.R.W. 2002. Amplification of the androgen receptor gene in bone metastases from hormone-refractory prostate cancer. J. Pathol. 198: 237-244.

Bubendorf, L., Kononen, J., Koivisto, P., Schraml, P., Moch, H., Gasser, T.C., Willi, N., Mihatsch, M.J., Sauter, G. & Kallioniemi, O.P. 1999. Survey of gene amplifications during prostate cancer progression by high-throughput fluorescence in situ hybridization on tissue microarrays. Cancer Research 59(4): 803-806.

Diamandis, E.P. 1997. Clinical applications of tumor suppressor genes and oncogenes in cancer. Clinica Chimica Acta 257(2): 157-180.

Fearon, E.R. & Vogelstein B. 1990. A genetic model for Colorectal Tumorigenesis. Cell 61: 759-767.

Ferlay, J., Shin, H.R., Bray, F., Forman, D., Mathers, C. & Parkin, D.M. 2010. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int. J. Cancer. 127: 2893-2917.

Fu, W., Bubendorf, L., Willi, N., Moch, H., Mihatsch, M.J., Sauter, G. & Gasser, T.C. 2000. Genetic changes in clinically organ-confined prostate cancer by comparative genomic hybridization. Urology 56(5): 880-885.

Gelmann, E.P. 2008. Prostate molecular oncogenesis: Gene deletions and somatic mutations. In Prostate Cancer: Signalling Networks, Genetics and New Treatment Strategies, edited by Pestell, R.G. & Nevalainen, M.T. USA: Humana Press. pp. 71-97.

Hashida, H., Takabayashi, A., Tokuhara, T., Hattori, N., Taki, T., Hasegawa, H., Satoh, S., Kobayashi, N., Yamaoka, Y. & Miyake, M. 2003. Clinical significance of transmembrane 4 superfamily in colon cancer. British Journal of Cancer 89(1): 158-167.

Hooker, S., Bonilla, C., Akereyeni, F., Ahaghotu, C. & Kittles, R.A. 2007. NAT2 and NER genetic variants and sporadic prostate cancer susceptibility in African-Americans. Prostate Cancer Prostatic Dis. 11(4): 349-356.

Jing, L., Liu, L., Yu, Y.P., Dhir, R., Acquafondada, M., Landsittel, D., Cieply, K., Wells, A. & Luo, J.H. 2004. Expression of myopodin induces suppression of tumor growth and metastasis. Am. J. Pathol. 164: 1799-1806.

Kasahara, K., Taguchi, T., Yamasaki, I., Kamada, M., Yuri, K. & Shuin, T. 2002. Detection of genetic alterations in advanced prostate cancer by comparative genomic hybridization. Cancer Genet Cytogenet. 137(1): 15-22.

Kiyohara, C. & Yoshimasu, K. 2007. Genetic polymorphisms in the nucleotide excision repair pathway and lung cancer risk: A meta-analysis. Int. J. Med. Sci. 4: 59-71.

Latil, A., Chêne, L., Cochant-Priollet, B., Mangin, P., Fournier, G., Berthon, P. & Cussenot, O. 2003. Quantification of expression of netrins, slits and their receptors in human prostate tumors. Int. J. Cancer. 103: 306-315.

Lengauer, C., Kinzler, K.W. & Vogelstein, B. 1998. Genetic instabilities in human cancers. Nature 396: 643-649.

Lerman, M.I. & Minna, J.D. 2000. The 630-kb lung cancer homozygous deletion region on human chromosome 3p21.3: Identification and evaluation of the resident candidate tumor suppressor genes. The International Lung Cancer Chromosome 3p21.3 Tumor Suppressor Gene Consortium. Cancer Res. 60: 6116-6133.

Lin, F., Yu, Y.P., Woods, J., Cieply, K., Gooding, B., Finkelstein, P., Dhir, R., Krill, D., Becich, M.J., Michalopoulos, G., Finkelstein, S. & Luo, J.H. 2001. Myopodin, a synaptopodin homologue, is frequently deleted in invasive prostate cancers. Am. J. Pathol. 159: 1603-1612.

Ma, S., Liu, X., Geng, J.G. & Guo, S.W. 2010. Increased SLIT immunoreactivity as a biomarker for recurrence in endometrial carcinoma. American Journal of Obstetrics and Gynecology 202: 68e1-68e11.

Mhawech, P., Herrman, F., Coassin, M., Guillou, L. & Iselin, C.E. 2003. Motility-related protein-1 (MRP-1/09) expression in urothelial bladder carcinoma and its relation to tumor recurrence and progression. Cancer 98: 1649-1657.

Paris, P.L., Andaya, A., Fridlyand, J., Jain, A.N., Weinberg, V., Kowbel, D. 2004. Whole genome scanning identifies genotypes associated with recurrence and metastasis in prostate tumors. Hum Mol Genet. 13(13): 1303-1313.

Ribeiro, F.R., Henrique, R., Hektoen, M., Berg, M., Jerónimom, C. & Teixeira, M.R. 2006. Comparison of chromosomal and array-based comparative genomic hybridization for the detection of genomic inbalances in primary prostate carcinomas. Mol. Cancer 5: 33.

Ross, J.S., Sheehan, C., Hayner-Buchan, A.M., Ambros, R.A., Kallakury, B.V., Kaufman, R. Jr. 1997. Prognostic significance of HER-2/neu gene amplification status by fluorescence in situ hybridizationof prostate carcinoma. Cancer 79: 2162-2170.

Sanchez-Carbayo, M., Schwarz, K., Charytonowicz, E., CordonCardo, C. & Mundel, P. 2003. Tumor suppressor role for myopodin in bladder cancer: Loss of nuclear expression of myopodin is cellcycle dependent and predicts clinical outcome. Oncogene 22: 5298-5305.

Sanyal, S., Festa, F., Sakano, S., Zhang, Z., Steineck, G. & Norming, U. 2004. Polymorphisms in DNA repair and metabolic genes in bladder cancer. Carcinogenesis 25: 729-734.

Saramäki, O.R., Porkka, K.P., Vessella, R.L. & Visakorpi, T. 2006. Genetic aberrations in prostate cancer by microarray analysis. Int. J. Cancer 119(6): 1322-1329.

Sho, M., Adachi, M., Taki, T., Hashida, H., Konishi, T. & Huang, C.L. 1998. Transmembrane 4 superfamily as a prognostic factor in pancreatic cancer. International Journal of Cancer 79: 509-516.

Solinas-Toldo, S., Lampel, S., Stilgenbauer, S., Nickolenko, J., Benner, A., Döhner, H., Cremer, T. & Lichter, P. 1997. Matrix-based comparative genomic hybridization: Biochips to screen for genomic imbalances. Genes Chromosome Cancer 20: 399-407.

van Beers, E.H., Joosse, S.A., Ligtenberg, M.J., Fles, R., Hogervorst, F.B.L. & Verhoef, S. 2006. A multiplex PCR predictor for aCGH success of FFPE samples. Br. J. Cancer 94(2): 333-337.

van Dekken, H., Paris, P.L., Albertson, D.G., Alers, J.C., Andaya, A. & Kowbel, D. 2004. Evaluation of genetic patterns in different tumor areas of intermediate-grade prostatic adenocarcinomas by high-resolution genomic array analysis. Genes Chromosomes Cancer 39(3): 249-256.

Visakorpi, T., Kallioniemi, A.H., Syvänen, A.C., Hyytinen, E.R., Karhu, R. & Tammela, T. 1997. Genetic changes in primary and recurrent prostate cancer by comparative genomic hybridization. Cancer Res. 55(2): 342-347.

Weins, A., Schwarz, K., Faul, C., Barisoni, L., Linke, W.A. & Mundel, P. 2001. Differentiation- and stress-dependent nuclear cytoplasmic redistribution of myopodin, a novel actin-bundling protein. J. Cell. Biol. 155: 393-404.

Yu, Y.P., Tseng, G.C. & Luo, J.H. 2006. Inactivation of myopodin expression associated with prostate cancer relapse. Urology 68: 578-582.

Zainal Ariffin, O. & Nor Saleha, I.T. 2011. National Cancer Registry Report 2007. Malaysia Cancer Statistics-Data and Figure. Kuala Lumpur: National Cancer Registry, Ministry of Health Malaysia.

Zvieriev, V., Wang, J.C. & Chevrette, M. 2005. Over-expression of CD9 does not affect in vivo tumorigenic or metastatic properties of human prostate cancer cells. Biochem. Biophys. Res. Commum. 337: 498-504.

 

 

*Corresponding author; email: reenarahayu@ppukm.ukm.edu. my

 

previous