| Sains Malaysiana 43(9)(2014): 1433–1437
          
           Approximate Bayesian Estimates of Weibull Parameters with
            Lindley’s Method
            
           (Anggaran
            Pengamiran Bayesian untuk Parameter Weibull Menggunakan Kaedah Lindley’s)
            
           
             
           
             
           CHRIS BAMBEY GUURE*1 & NOOR AKMA IBRAHIM2
            
           
             
           1Department
            of Biostatistics, School of Public Health, University of Ghana
            
           Legon,
            Accra, Ghana
            
           
             
           2Department
            of Mathematics, Faculty of Science, Universiti Putra Malaysia
            
           43400
            Serdang, Selangor, Malaysia
            
           
             
           Received:
            14 October 2013/Accepted: 13 January 2014
            
           
             
           ABSTRACT
            
           One of the most
            important lifetime distributions that is used for modelling and analysing data
            in clinical, life sciences and engineering is the Weibull distribution. The
            main objective of this paper was to determine the best estimator for the two-parameter
            Weibull distribution. The methods under consideration are the frequentist
            maximum likelihood estimator, least square regression estimator and the
            Bayesian estimator by using two loss functions, which are squared error and
            linear exponential. Lindley approximation is used to obtain the Bayes
            estimates. Comparisons are made through simulation study to determine the
            performance of these methods. Based on the results obtained from this
            simulation study the Bayesian approach used in estimating the Weibull
            parameters under linear exponential loss function is found to be superior as
            compared to the conventional maximum likelihood and least squared methods.
            
           
             
           Keywords: Bayesian;
            least squarer; maximum Likelihood; squared error and linear exponential loss functions
            
           
             
           ABSTRAK
            
           Salah satu taburan
            jangka hayat yang sangat penting yang sering digunakan dalam pemodelan dan
            analisis data klinikal, sains hayat dan kejuruteraan adalah taburan Weibull.
            Objektif utama kertas ini adalah untuk menentukan penganggar yang paling baik
            bagi taburan Weibull dua-parameter. Kaedah yang dipertimbangkan adalah anggaran
            kebolehjadian maksimum, anggaran regresi kuasa dua terkecil dan anggaran Bayes
            menggunakan dua fungsi, iaitu ralat kuasa dua dan fungsi, linear eksponen. Pengamiran
            Lindley digunakan untuk memperoleh anggaran Bayes. Perbandingan dijalankan
            melalui simulasi untuk menentukan prestasi kaedah. Hasil yang diperoleh
            daripada kajian simulasi menunjukkan pendekatan Bayes dalam menganggar
            parameter Weibull dengan fungsi linear eksponen didapati lebih baik jika
            dibandingkan dengan kaedah konvensional kebolehjadiaan maksimum dan kaedah
            kuasa dua terkecil berdasarkan nilai ralat kuasa dua min.
            
           
             
           Kata kunci: Bayesian;
            fungsi ralat kuasa dua dan linear eksponen; kebolehjadiaan maksimum; regresi
            kuasa dua terkecil
            
           REFERENCES
            
           
             
           Abernethy, R.B. 2006. The
            New Weibull Handbook. 5th ed. Florida: Robert B. Abernethy.
            
           Al-Athari,
            F.M. 2011. Parameter estimation for the double-pareto distribution. J.
              Mathematics Statistics 7: 289-294.
            
           Al
            Omari, M.A. & Ibrahim, N.A. 2011. Bayesian survival estimator for weibull
            distribution with censored. Data. J. Appl. Sci. 11: 393-396.
            
           Gibbons,
            I.D. & Vance, C.L. 1981. A simulation study of estimators for the
            2-parameter Weibull distribution. IEEE Tran. Reliabil. R-30.
            
           Lawless,
            J.F. 1982. Statistical Models and Methods for Lifetime Data. New York:
            Wiley.
            
           Lindley,
            D.V. 1980. Approximate bayesian methods. Trabajos Estadist 31: 223-237.
            
           Lye,
            L.M., Hapuarachchi, K.P. & Ryan, S. 1993. Bayes estimation of the
            extreme-value reliability function. IEEE Trans. Reliab. 42: 641-644.
            
           Pandey,
            B.N., Dwividi, N. & Pulastya, B. 2011. Comparison between bayesian and
            maximum likelihood estimation of the scale parameter in weibull distribution
            with known shape under linex loss function. J. Sci. Res. 55: 163-172.
            
           Preda,
            V., Panaitescu, E. & Constantinescu, A. 2010. Bayesian estimators of
            modified-weibull distribution parameters using Lindleys approximation. WSEAS
              Transactions on Mathematics 7: 539-549.
            
           Syuan-Rong,
            H. & Shuo-Jye, W. 2011. Bayesian estimation and prediction for weibull
            model with progressive censoring. J. Statistical Computation Simul. 82:
            1607-1620.
            
           Zellner,
            A. 1986. Bayesian estimation and prediction using asymmetric loss functions. J.
              American Statistical Association 81: 446-451.
            
           Zhang,
            L.F., Xie, M. & Tang, L.C. 2007. A study of two estimation approaches for
            parameters of weibull distribution based on WPP. Reliab. Eng. Syst. Safety 92:
            360-368.
            
           
             
           
             
           *Corresponding author; email: cbguure@ug.edu.gh   
            
             |