Sains Malaysiana 44(10)(2015): 1423–1430

 

Estimation of Basic Reproduction Number for Dengue Fever in Lahore, Pakistan

(Penganggaran Asas Nombor Pembiakan R0 untuk Demam Denggi di Lahore, Pakistan)

 

 

NOOR BADSHAH *, HASSAN SHAH & MUHAMMAD JAVID

 

Department of Basic Sciences, University of Engineering of Technology Peshawar, Pakistan

 

Received: 8 September 2013/Accepted: 15 June 2015

 

ABSTRACT

Dengue fever is a vector-borne viral disease which is now endemic in more than 100 countries affecting more than 2.5 billion people worldwide. In recent years, dengue fever has become a major threat to public health in Pakistan. In this paper, we derived an explicit formula for reproduction number R0 (the most important epidemiological parameter) and then used real data of dengue fever cases of different hospitals of Lahore (Pakistan) on R0. Conditions for local stability of equilibrium points are discussed. In the end, simulations are carried out for different situations.

 

Keywords: Endemic; equilibrium points; simulations; SIR model; stability

 

ABSTRAK

 

Demam denggi adalah penyakit bawaan vektor virus yang kini berleluasa di lebih 100 buah negara yang melibatkan lebih daripada 2.5 bilion penduduk di seluruh dunia. Sejak kebelakangan ini, demam denggi telah menjadi satu ancaman utama kepada kesihatan awam di Pakistan. Dalam kertas ini, kami menerbitkan formula yang jelas untuk nombor pembiakan R0 (parameter epidemiologi yang paling penting) dan kemudian menggunakan data sebenar kes demam denggi daripada hospital berbeza di Lahore (Pakistan) untuk R0. Syarat untuk titik keseimbangan kestabilan tempatan dibincangkan. Akhirnya, simulasi dijalankan untuk situasi yang berbeza.

 

Kata kunci: Endemik; kestabilan; Model SIR; simulasi; titik keseimbangan

REFERENCES

Akram, D.S., Igarashi, A. & Takasu, T. 1998. Dengue virus infection among children with undifferentiated fever in Karachi. Indian J. Pediatr. 65: 735-740.

Chan, Y.C., Salahuddin, N.I., Khan, J., Tan, H.C. & Seah, C.L. 1995. Dengue haemorrhagic fever outbreak in Karachi, Pakistan. Trans R. Soc. Trop. Med. Hyg. 89: 619-620.

Degallier, N., Favier, C., Boulanger, J.P., Menkes, C.E. & Oliveira, C. 2005. Unenouvelle methode d’estimation du taux de reproduction des maladies (R0): application a‘ l’etude des epidemies de Dengue dans le District Federal, Bresil. Environnement, Risques et Sante 4: 131-135.

Derouich, M., Boutayeb, A. & Twizell, E.H. 2003. A model of dengue fever. Biomedical Engineering Online 2(1): 4.

Favier, C., Degallier, N. & Rosa-Freitas, M.G. 2006. Early determination of the reproductive number for vector-borne diseases: The case of dengue in Brazil. Tropical Medicine and International Health 3: 332-340.

Focks, D.A., Haile, D.G., Daniels, E. & Mount, G.A. 1993. Dynamic life table model for Aedes aegypti (Diptera: Culicidae): Analysis of the literature and model development. Journal of Medical Entomology 30: 1003-1017.

Hethcote, H.W. 2000. The mathematics of infectious diseases. SIAM Review 42(4): 599-653.

Khan, E., Siddiqui, J., Shakoor, S., Mehraj, V., Jamil, B. & Hasan, R. 2007. Dengue outbreak in Karachi, Pakistan, experience at a tertiary care center. Trans R. Soc. Trop. Med. Hyg. 101: 1114-1119.

Mcbride, W.J. & Bielefeldt-Ohmann, H. 2000. Dengue viral infections: Pathogenesis and epidemiology. Microbes and Infection 2: 1041-1050.

Paul, R.E., Patel, A.Y., Mirza, S., Fisher-Hoch, S.P. & Luby, S.P. 1998. Expansion of epidemic dengue viral infections to Pakistan. Int. J. Infect. Dis. 2: 197-201.

Pongsumpun, P. 2008. Mathematical model of dengue disease with the incubation period of virus. World Academy of Science, Engineering and Technology. p. 44.

Robert, M. 1997. Stability and Complexity in Model Ecosystems. New Jersey: Princeton University Press.

World Health Organization. 1997. Dengue Haemorrhagic Fever: Diagnosis, Treatment, Prevention and Control. Geneva.

 

 

*Corresponding author; email: noor2knoor@gmail.com

 

 

 

previous