Sains Malaysiana 44(10)(2015): 1481–1488
U6 snRNA is a Suitable
Endogenous Control for microRNA-124 and -134 in Cultured Rat Hippocampal
Neurons
(U6 snRNA adalah kawalan Endogen yang sesuai untuk microRNA-124 dan -134 dalam neuron hipokampus tikus
berkultur)
AI SZE CHING
& AZLINA AHMAD-ANNUAR*
Department of Biomedical
Science, Faculty of Medicine, University of Malaya,
50603 Kuala Lumpur, Malaysia
Received: 21 July 2014/Accepted:
23 June 2015
ABSTRACT
As researchers seek to determine the
cellular mechanisms underlying biological processes, they have turned to
analyze the functional role of microRNAs to understand this process
in details. Here, we investigated the expression pattern of two microRNAs,
miR-124 and -134 in maturing neurons and found that the choice of endogenous
controls influenced the observed expression levels of these microRNAs.
We have cultured rat hippocampal neurons and performed quantitative PCR on
the microRNAs using Taqman gene expression assays. The expression
of miRNAs was normalised with selected endogenous controls.
Using BestKeeper and NormFinder software, we found that 18S rRNA and
5S rRNA to be unsuitable as endogenous controls in this
system, while normalising to U6 snRNA produced more consistent
results. Our study would like to highlight the importance of empirically
testing proposed endogenous controls in any model system before data
interpretation is carried out.
Keywords: Endogenous controls;
hippocampal neuron culture; microRNAs; miR-124; miR-134
ABSTRAK
Dalam usaha untuk menentukan mekanisme
sel dalam proses biologi, para penyelidik telah beralih untuk menganalisis
peranan fungsi mikroRNA untuk memahami proses ini
dengan lebih mendalam. Kami telah menentukan tahap ekspresi untuk
dua jenis mikroRNA, miR-124 dan -134 dalam sel-sel neuron yang semakin
matang dan mendapati bahawa pilihan untuk gen endogen boleh mempengaruhi
tahap ekspresi yang diperhatikan untuk mikroRNA tersebut. Kami telah mengkultur
sel neuron daripada hipokampus tikus dan menggunakan teknik PCR
kuantitatif dengan asai ekspresi gen Taqman. Ekspresi
miRNA gen
telah dipenormal dengan gen endogen. Dengan menggunakan perisian
BestKeeper dan NormFinder, kami mendapati bahawa rRNA 18S dan rRNA 5S
merupakan gen endogen yang tidak sesuai dalam sistem ini, manakala
keputusan lebih konsisten apabila snRNA U6 digunakan. Hasil penyelidikan
kami menunjukkan kepentingan untuk menggunakan pendekatan secara
empirik semasa menimbangkan pilihan gen endogen yang ingin digunakan.
Kata kunci: Kawalan endogen; kultur neuron
hipokampus; mikroRNAs; miR-124; miR-134
REFERENCES
Allison, L.A., North, M.T., Murdoch, K.J., Romaniuk, P.J.,
Deschamps, S. & le Maire, M. 1993. Structural
requirements of 5S rRNA for nuclear transport, 7S ribonucleoprotein particle
assembly, and 60S ribosomal subunit assembly in Xenopus oocytes. Mol.
Cell. Biol. 13(11): 6819-6831.
Andersen, C.L., Jensen, J.L. & Orntoft, T.F. 2004. Normalization of real-time quantitative reverse transcription-PCR data: A
model-based variance estimation approach to identify genes suited for
normalization, applied to bladder and colon cancer data sets. Cancer Res. 64(15):
5245-5250.
Arvanitis, D.N., Jungas, T., Behar, A. & Davy, A. 2010. Ephrin-B1 reverse
signaling controls a posttranscriptional feedback mechanism via miR-124. Mol.
Cell Biol. 30(10): 2508-2517.
Bak, M.,
Silahtaroglu, A., Moller, M., Christensen, M., Rath, M.F., Skryabin, B.,
Tommerup, N. & Kauppinen, S. 2008. MicroRNA expression in
the adult mouse central nervous system. RNA 14(3): 432-444.
Brett, J.O., Renault, V.M., Rafalski, V.A., Webb, A.E. &
Brunet, A. 2011. The microRNA cluster miR-106b~25 regulates adult neural
stem/progenitor cell proliferation and neuronal differentiation. Aging
(Albany NY) 3(2): 108-124.
Bustin,
S.A., Benes, V., Garson, J.A., Hellemans, J., Huggett, J., Kubista, M.,
Mueller, R., Nolan, T., Pfaffl, M.W., Shipley, G.L., Vandesompele, J. &
Wittwer, C.T. 2009. The MIQE guidelines: Minimum information for publication of
quantitative real-time PCR experiments. Clin. Chem. 55(4): 611-622.
Caputo, V., Sinibaldi, L., Fiorentino, A., Parisi, C.,
Catalanotto, C., Pasini, A., Cogoni, C. & Pizzuti, A. 2011. Brain
derived neurotrophic factor (BDNF) expression is regulated by microRNAs miR-26a
and miR-26b allele-specific binding. PLoS One 6(12): e28656.
Cheng, L.C., Pastrana, E., Tavazoie, M. & Doetsch, F. 2009. miR-124 regulates adult neurogenesis in the subventricular
zone stem cell niche. Nat. Neurosci. 12(4): 399-408.
Dotti, C.G.,
Sullivan, C.A. & Banker, G.A. 1988. The establishment of
polarity by hippocampal neurons in culture. J. Neurosci. 8(4):
1454-1468.
Fiore, R., Khudayberdiev, S., Christensen, M., Siegel, G.,
Flavell, S.W., Kim, T.K., Greenberg, M.E. & Schratt, G. 2009. Mef2-
mediated transcription of the miR379-410 cluster regulates activity-dependent
dendritogenesis by fine-tuning Pumilio2 protein levels. EMBO J. 28(6):
697-710.
Genovesi, L.A., Anderson, D., Carter, K.W., Giles, K.M. &
Dallas, P.B. 2012. Identification of suitable endogenous control
genes for microRNA expression profiling of childhood medulloblastoma and human
neural stem cells. BMC Res. Notes 5: 507.
Godlewski,
J., Nowicki, M.O., Bronisz, A., Williams, S., Otsuki, A., Nuovo, G., Raychaudhury,
A., Newton, H.B., Chiocca, E.A. & Lawler, S. 2008. Targeting of the Bmi-1
oncogene/ stem cell renewal factor by microRNA-128 inhibits glioma
proliferation and self-renewal. Cancer Res. 68(22): 9125- 9130.
Kang, H.
& Schuman, E.M. 1996. A requirement for local protein
synthesis in neurotrophin-induced hippocampal synaptic plasticity. Science 273(5280): 1402-1406.
Kim, J., Krichevsky, A., Grad, Y., Hayes, G.D., Kosik, K.S.,
Church, G.M. & Ruvkun, G. 2004. Identification of
many microRNAs that copurify with polyribosomes in mammalian neurons. Proc.
Natl. Acad Sci. USA 101(1): 360-365.
Krichevsky, A.M., King, K.S., Donahue, C.P., Khrapko, K. &
Kosik, K.S. 2003. A microRNA array reveals extensive regulation of microRNAs during
brain development. RNA 9(10): 1274-1281.
Lim, Q.E., Zhou, L., Ho, Y.K., Wan, G. & Too, H.P. 2011. snoU6 and 5S RNAs are not reliable miRNA reference genes in
neuronal differentiation. Neuroscience 199: 32-43.
Livak, K.J.
& Schmittgen, T.D. 2001. Analysis of relative gene expression data using
real-time quantitative PCR and the 2(-Delta Delta C(T))
Method. Methods 25(4): 402-408.
Madhani,
H.D., Bordonne, R. & Guthrie, C. 1990. Multiple roles for
U6 snRNA in the splicing pathway. Genes Dev. 4(12B): 2264-2277.
Makeyev, E.V., Zhang, J., Carrasco, M.A. & Maniatis, T. 2007. The
MicroRNA miR-124 promotes neuronal differentiation by triggering brain-specific
alternative pre-mRNA splicing. Mol. Cell 27(3): 435-448.
Mishima, T.,
Yamamoto, K., Sugimoto, T., Sakakibara, K., Uehara, A. & Yoshii, S. 2010. Severe aortic regurgitation resulting from a downward displacement
of anterior aortic annulus and fibrous strands in the bicuspid aortic valve. Ann. Thorac. Cardiovasc. Surg. 16(1): 57-59.
Paschou, M. & Doxakis, E. 2012. Neurofibromin 1 is a miRNA target in neurons. PLoS One 7(10): e46773.
Pfaffl, M.W., Tichopad, A., Prgomet, C. & Neuvians, T.P. 2004. Determination of stable housekeeping genes, differentially regulated target
genes and sample integrity: BestKeeper-- Excel-based tool using pair-wise
correlations. Biotechnol. Lett. 26(6): 509-515.
Ponomarev,
E.D., Veremeyko, T., Barteneva, N., Krichevsky, A.M. & Weiner, H.L. 2011. MicroRNA-124 promotes microglia
quiescence and suppresses EAE by deactivating macrophages via the
C/EBP-alpha-PU.1 pathway. Nat. Med. 17(1): 64-70.
Rabl,
J., Leibundgut, M., Ataide, S.F., Haag, A. & Ban, N. 2011. Crystal structure of
the eukaryotic 40S ribosomal subunit in complex with initiation factor 1. Science 331(6018): 730-736.
Rajasethupathy,
P., Fiumara, F., Sheridan, R., Betel, D., Puthanveettil, S.V., Russo, J.J.,
Sander, C., Tuschl, T. & Kandel, E. 2009. Characterization of
small RNAs in Aplysia reveals a role for miR-124 in constraining synaptic
plasticity through CREB. Neuron 63(6): 803-817.
Schratt, G.M., Nigh,
E.A., Chen, W.G., Hu, L. & Greenberg, M.E. 2004. BDNF regulates the
translation of a select group of mRNAs by a mammalian target of
rapamycin-phosphatidylinositol 3-kinase-dependent pathway during neuronal
development. J. Neurosci. 24(33): 7366-7377.
Schratt, G.M., Tuebing,
F., Nigh, E.A., Kane, C.G., Sabatini, M.E., Kiebler, M. & Greenberg, M.E.
2006. A brain-specific microRNA regulates dendritic spine development. Nature 439(7074): 283-289.
Smirnova,
L., Grafe, A., Seiler, A., Schumacher, S., Nitsch, R. & Wulczyn, F.G. 2005. Regulation
of miRNA expression during neural cell specification. Eur. J.
Neurosci. 21(6): 1469-1477.
Wang,
W.X., Wilfred, B.R., Baldwin, D.A., Isett, R.B., Ren, N., Stromberg, A. &
Nelson, P.T. 2008. Focus on RNA isolation: Obtaining RNA for microRNA (miRNA) expression profiling
analyses of neural tissue. Biochim. Biophys. Acta 1779(11): 749-757.
*Corresponding author; email: azlina_aa@um.edu.my
|