Sains Malaysiana 44(11)(2015): 1587–1591
Inhibition of Consortium Sulfate Reducing Bacteria from
Crude Oil for Carbon Steel Protection
(Perencatan Konsortium Bakteria Penurun Sulfat daripada Minyak Mentah sebagai Pelindung Keluli Karbon)
NUR AKMA MAHAT1*, NORINSAN KAMIL OTHMAN1, FATHUL KARIM SAHRANI2 & MOHD NAZRI IDRIS1,3
1School
of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia
43600 Bangi, Selangor Darul Ehsan.
Malaysia
2School
of Environmental and Natural Resource Sciences, Faculty of Science and
Technology
Universiti Kebangsaan Malaysia, 43600 Bangi,
Selangor Darul Ehsan, Malaysia
3School
of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Engineering Campus, 14300 Nibong Tebal, Pulau Pinang, Malaysia
Received:
28 March 2015/Accepted: 29 June 2015
ABSTRACT
The efficiency of cetyltrimethylammonium bromide (CTAB)
to reduce the activity of consortium bacteria consisting of sulphate-reducing
bacteria (C-SRB) has been investigated on variable concentration by
weight loss test, potentiodynamic polarization
and diffusion disk methods. C-SRB was isolated from tropical crude
oil of Malaysian offshore. Biofilm analysis was also evaluated by
variable pressure scanning electron microscopy (VPSEM). Weight loss and potentiodynamic polarization analyses showed that CTAB
is able to inhibit the biocorrosion
process and their inhibition efficiency had reached to 85 and 65%
at 300 ppm CTAB,
respectively. Increasing of CTAB efficiency as a function
of concentration was also supported by diffusion disk analysis.
Biofilm analysis showed that less of C-SRB and their metabolic by-product
had been observed. It was concluded that CTAB was
able to reduce the C-SRB activity and prevent biocorrosion process on carbon steel surface.
Keywords: Carbon
steel; consortium SRB; potentiodynamic polarization
ABSTRAK
Kecekapan Cetriltrimetilammonium bromida (CTAB) untuk mengurangkan aktiviti bagi konsortium bakteria yang mengandungi bakteria penurun sulfat (C-SRB) telah dikaji pada kepekatan yang berbeza dengan menggunakan kaedah kehilangan berat, pengutuban potensiodinamik dan resapan cakera. SRB telah diasingkan daripada minyak mentah tropika luar pesisir Malaysia. Analisis biofilem juga dinilai dengan mikroskopi pengimbas elektron pemboleh ubah tekanan (VPSEM). Analisis kehilangan berat dan pengutuban potensiodinamik mendedahkan bahawa CTAB mampu untuk menghalang berlakunya proses biokakisan dan kecekapan perencat yang ditunjukkan bagi kedua-dua kaedah telah mencapai kepada 85 dan 65% pada 300 ppm CTAB. Peningkatan kecekapan CTAB sebagai fungsi kecekapan juga disokong oleh analisis resapan cakera. Analisis biofilem menunjukkan bahawa terdapatnya pengurangan daripada sel C-SRB dan juga hasil produk metabolik bakteria telah diperhatikan. Kesimpulannya, CTAB mampu untuk mengurangkan aktiviti C-SRB dan juga mencegah daripada berlakunya proses biokakisan terhadap keluli karbon.
Kata kunci: Keluli karbon; konsortium SRB; pengutuban potensiodinamik
REFERENCES
Alabbas, F.M., Bhola, R., Spear, J.R., Olson,
D.L. & Mishra, B. 2013. Electrochemical
characterization of microbiologically influenced corrosion on linepipe steel exposed to facultative anaerobic desulfovibrio sp. Int. J. Electrochem. Sci. 8: 859- 871.
Carmona-ribeiro, A.M., Dias, L. &
Carrasco, D.M. 2013. Cationic antimicrobial polymers and
their assemblies. Int. J. Mol. Sci. 14: 9906-9946.
Flemming, H-C. & Wingender, J. 2010. The biofilm matrix. Nature Reviews Microbiology 8:
623-633.
Javaherdashti, R. 2011. Impact of sulphate-reducing
bacteria on the performance of engineering materials. Appl. Microbiol. Biotechnol.91: 1507-1517.
Mansfeld, F.
2007. The interaction of bacteria and metal surfaces. Electrochim. Acta52:
7670-7680.
Negm,
N.A., Ghuiba, F.M., Mahmoud, S.A. & Tawfik, S.M. 2011. Biocidal and
anti-corrosive activities of benzoimidazol-3-ium cationic Schiff base
surfactants. Eng. Life Sci. 11: 496-510.
Rabea,
E.I., Badawy, M.E.T., Stevens, C.V., Smagghe, G. & Steurbaut, W.
2003. Chitosan as antimicrobial agent: Applications and mode of action. Biomacromolecules 4: 1457-1465.
Shaban,
S.M., Saied, A., Tawfik, S.M., Abd-Elaal,
A. & Aiad, I. 2013. Corrosion inhibition and Biocidal effect of some cationic surfactants based on
Schiff base. J. Ind. Eng. Chem. 19(6): 2004-2009.
Shanthy, P., Rengan, P., Chelvan, A.T., Rathika, K. & Rajendran, S.
2009. Corrosion inhibition and biocidal activity of a
cationic surfactant. Indian J. Chem. Technol. 16: 328-333.
Sahrani,
F.K., Ibrahim, Z., Yahya, A. & Aziz, M. 2009. Electrochemical impedance spectroscopy and surface studies of steel
corrosion by sulphate-reducing bacteria. Sains Malaysiana38:
359-364.
Turkiewicz, A., Brzeszcz, J. & Kapusta,
P. 2013. The application of biocides in the oil and gas
industry. Nafta-Gaz R69(2): 103-111.
Videla,
H.A. & Herrera, L.K. 2009. Understanding microbial
corrosion inhibition: A comprehensive overview. Int. Biodet. Biodeg. 63: 896-900.
Zinkevich,
V., Bogdarina, I., Kang, H., Hill, M.A.W., Tapper, R.
& Beech, I.B. 1996. Characterisation of exopolymers produced by different
isolates of marine sulphate-reducing bacteria. Int. Biodet. Biodeg.37: 163-172.
*Corresponding author; email: nurakmamahat@yahoo.com
|