Sains Malaysiana 44(11)(2015): 1593–1598
Influence of Benzyltriethylammonium Chloride on Biocorrosion
Activity of Consortium Bacteria from Tropical Crude Oil
(Pengaruh Benziltrietilamonium Klorida terhadap Aktiviti Biokakisan Konsortium Bakteria daripada Minyak Mentah Tropika)
MOHD NAZRI IDRIS1,2*, ABDUL RAZAK DAUD1, NUR AKMA MAHAT1, MOHD HAFIZUDDIN AB GHANI1, FATHUL KARIM SAHRANI2 & NORINSAN KAMIL OTHMAN1
1School
of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia
43600 Bangi, Selangor Darul Ehsan,
Malaysia
2School
of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Engineering Campus, 14300 Nibong Tebal, Pulau Pinang, Malaysia
3School
of Environment and Natural Resources Science, Faculty of Science and Technology
Universiti Kebangsaan Malaysia, 43600 Bangi,
Selangor Darul Ehsan, Malaysia
Received: 28 March 2015/Accepted: 3 July 2015
ABSTRACT
The performance of
pipeline system used in petroleum industry is crucially declined by natural
microbial activities and demanding extra operational cost. Requirement on high
capability of functional substances is attracting worldwide research interest.
The aim of this paper was to study the effectiveness of benzyltriethylammonium chloride (BTC) on reducing the activity of a consortium bacteria
consisting of sulfate-reducing bacteria (C-SRB). C-SRB was
isolated from tropical crude oil and enumeration of this consortium was
measured by viable cell count technique. The effectiveness of BTC was
calculated from potentiodynamic polarization method
and biofilm analysis was performed by scanning electron microscope. The viable
cell count technique indicated that the maximum growth of C-SRB was
approximately 160 trillion CFU/mL at 7 days incubation period. BTC was
capable of reducing biocorrosion activity due to
adsorption process and mitigating SRB species. Biofilm analysis
has proven that C-SRB activity is minimized due to
less presence of bacterial growth, extracellular polymeric substances and
corrosion product. In conclusion, BTC is capable to inhibit C-SRB
activity on biocorrosion of carbon steel pipeline.
Keywords: Carbon
steel; consortium bacteria; potentiodynamic polarization
ABSTRAK
Keupayaan sistem saluran
paip yang digunakan
dalam industri petroleum banyak mengalami penyusutan akibat aktiviti mikrob dan memerlukan
kos pengoperasian yang tinggi. Keperluan keupayaan yang tinggi daripada sebatian berfungsi telah menarik minat penyelidikan
seluruh dunia.
Matlamat kajian ini adalah untuk
mengkaji kecekapan
benziltrietilamonium klorida
(BTC)
terhadap penurunan
aktiviti konsortium bakteria yang mengandungi bakteria penurun sulfat (C-SRB). C-SRB telah dipencilkan daripada minyak mentah tropika dan pengangkaan konsortium ini telah dihitung melalui teknik kiraan sel boleh
hidup. Kecekapan
BTC
ditentukan daripada kaedah kekutuban keupayaan dinamik dan analisis biofilem
telah dijalankan
dengan menggunakan mikroskop elektron imbasan. Teknik kiraan sel boleh
hidup mendapati
nilai pertumbuhan maksimum C-SRB dianggarkan
berjumlah 160 trillion CFU/mL
dalam tempoh
7 hari pengeraman. BTC didapati berupaya mengurangkan aktiviti biokakisan melalui proses penjerapan dan pengurangan spesies SRB.
Analisis biofilem
membuktikan bahawa aktiviti C-SRB adalah
minimum dengan penggunaan
BTC
disebabkan kurangnya pertumbuhan bakteria, juga sebatian polimer ekstrasel dan hasil kakisan. Sebagai kesimpulan, BTC
didapati berupaya menyekat aktiviti C-SRB dan proses biokakisan pada permukaan paip keluli karbon.
Kata kunci: Kekutuban keupayaan dinamik; keluli karbon; konsortium bakteria
REFERENCES
Abdullah,
A., Yahaya, N., Md Noor, N.
& Mohd Rasol, R. 2014.
Microbial corrosion of Api 5l X-70 carbon steel by Atcc 7757 and consortium of sulfate-reducing bacteria. Journal
of Chemistry 2014(1): 1-7.
Ahamad, I.,
Prasad, R., Ebenso, E.E. & Quraishi,
M.A. 2012. Electrochemical and quantum chemical study of Albendazole as corrosion inhibitor for mild steel in hydrochloric acid solution. International
Journal of Electrochemical Science 7: 3436-3452.
Ahmad,
Z. 2006. Principles of Corrosion Engineering and Corrosion Control.
Oxford: Butterworth-Heinemann.
Aiad, I.,
El-Sukkary, M.M., Soliman,
E.A., El-Awady, M.Y. & Shaban,
S.M. 2014. Characterization, surface properties and biological activity of new
prepared cationic surfactants. Journal of Industrial and Engineering
Chemistry 20(4): 1633-1640.
Al-Amiery, A., Kadhum, A., Alobaidy, A.H., Mohamad, A. & Hoon,
P. 2014. Novel corrosion inhibitor for mild steel in Hcl. Materials 7(2): 662-672.
Al-Jaroudi, S.S., Ul-Hamid, A. &
Al-Gahtani, M.M. 2011. Failure of cruide oil pipeline due to microbiologically induced corrosion. Corrosion
Engineering, Science and Technology 46(4): 568-579.
Al-Sabagh, A.M., Kandil, N.G.,
Ramadan, O., Amer, N.M., Mansour, R. & Khamis, E.A. 2011. Novel cationic surfactants from fatty
acids and their corrosion inhibition efficiency for carbon steel pipelines in 1
M Hcl. Egyptian Journal of Petroleum 20(2):
47-57.
Alabbas,
F.M., Spear, J.R., Kakpovbia, A., Balhareth,
N.M., Olson, D.L. & Mishra, B. 2012. Bacterial attachment to metal
substrate and its effects on microbiologically-influenced corrosion in
transporting hydrocarbon pipeline. Journal of Pipeline Engineering 11(3):
63-72.
Badawi,
A.M., Hegazy, M.A., El-Sawy,
A.A., Ahmed, H.M. & Kamel, W.M. 2010. Novel
quaternary ammonium hydroxide cationic surfactants as corrosion inhibitors for
carbon steel and as biocides for sulfate reducing bacteria (Srb). Materials Chemistry and Physics 124(1): 458-465.
Dkhireche, N., Dahami, A., Rochdi, A., Hmimou, J., Touir, R., Ebn Touhami, M., El Bakri, M., El Hallaoui, A., Anouar, A.
& Takenouti, H. 2013. Corrosion and scale
inhibition of low carbon steel in cooling water system by 2-Propargyl-
5-O-Hydroxyphenyltetrazole. Journal of Industrial and Engineering Chemistry 19(6):
1996-2003.
Hegazy, M.A., Abdallah, M., Awad, M.K. & Rezk, M. 2014.
Three novel di-quaternary ammonium salts as corrosion inhibitors for Api X65 steel pipeline in acidic solution. Part I:
Experimental results. Corrosion Science 81: 54-64.
Idris, M.N., Daud, A.R. & Othman, N.K. 2015. Effectiveness of benzyl triethylammonium chloride for corrosion control on
carbon steel. Journal of Applied Science and Agriculture 10(5): 52-57.
Idris,
M.N., Daud, A.R., Othman, N.K. & Jalar, A. 2013. Corrosion control by benzyl triethylammonium chloride: Effects of temperture and its concentration. International Journal of Engineering & Technolgy13(3): 47-51.
Kakooei, S.,
Mokhtar, C.I. & Ariwahjoedi, B. 2012. Mechanisms
of microbiologically influenced corrosion: A review. World Applied Sciences
Journal 17(4): 524-531.
Li,
F., An, M., Liu, G. & Duan, D. 2009. Effects of sulfidation of passive film in the presence of Srb on the pitting corrosion behaviors of stainless steels. Materials Chemistry and Physics 113(2-3): 971-976.
Mahat,
N.A., Othman, N.K., Sahrani, F.K. & Idris, M.N.
2015. Microbial corrosion of carbon steel by tropical environment consortium
bacteria containing Srb. American-Eurasian Journal
of Sustainable Agriculture 9(2): 29-34.
Mohamad,
N., Jalar, A. & Othman, N.K. 2014. Surface
morphology study on aluminum alloy after treated with silicate-based corrosion
inhibitor from paddy residue. Sains Malaysiana43(6): 935-940.
Moiseeva,
L.S. & Kondrova, O.V. 2005. Biocorrosion of oil and gas field equipment and chemical methods for its suppression. I. Protection
of Metals 41(4): 385-393.
Musa,
A.Y., Kadhum, A.A.H., Mohamad, A.B., Takriff, M.S. & Chee, E.P. 2012. Inhibition of aluminum
corrosion by phthalazinone and synergistic effect of
halide ion in 1.0 M Hcl. Current Applied Physics 12(1):
325-330.
Negm,
N.A., Kandile, N.G., Badr,
E.A. & Mohammed, M.A. 2012. Gravimetric and electrochemical evaluation of
environmentally friendly nonionic corrosion inhibitors for carbon steel in 1.0
M Hcl. Corrosion Science 65: 94- 103.
Ortega Morente, E., Fernández-Fuentes,
M.A., Grande Burgos, M.J., Abriouel, H., Pérez
Pulido, R. & Gálvez, A. 2013. Biocide tolerance
in bacteria. International Journal of Food Microbiology 162(1): 13-25.
Sahrani,
F.K., Ibrahim, Z., Yahya, A. & Aziz, M. 2008a.
Isolation and identification of marine sulphate-reducing
bacteria, Desulfovibrio Sp. and Citrobacter freundiifrom Pasir Gudang, Malaysia. Sains Malaysiana37(4):
365-371.
Sahrani,
F.K., Madzlan, A.A., Zaharah,
I. & Adibah, Y. 2008b. Surface analysis of marine sulphate reducing bacteria exopolymers on steel during biocorrosion using X-Ray
photoelectron spectroscopy. Sains Malaysiana37(2): 131- 135.
Sheng,
G-P., Yu, H-Q. & Li, X-Y. 2010. Extracellular polymeric substances (Eps) of
microbial aggregates in biological wastewater treatment systems: A review. Biotechnology
Advances 28(6): 882-894.
Yadav,
M., Yadav, P.N. & Sharma, U. 2013. Substituted imidazoles as corrosion inhibitor for N80 steel in hydrochloric acid. Indian Journal of
Chemical Technology 20: 363- 370.
*Corresponding author; email: nazriselama@gmail.com
|