Sains Malaysiana 44(11)(2015): 1609–1614
Optimization of Areca catechu Fronds
as Adsorbent for Decolorization and
COD Removal of Wastewater through the Adsorption Process
(Pengoptimuman Pelepah Areca
catechu sebagai Penjerap untuk Penyingkiran Warna dan COD Air Sisa melalui Proses Penjerapan)
MUHD NAZMI ISMAIL1*, HAMIDI ABDUL AZIZ1, MOHD AZMIER AHMAD2
& NIK ATHIRAH YUSOFF3
1School
of Civil Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Pulau Pinang, Malaysia
2School
of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Pulau Pinang, Malaysia
3School
of Environmental Engineering, Universiti Malaysia
Perlis, 01000 Arau, Perlis Indera Kayangan,
Malaysia
Received:
24 November 2014/Accepted: 14 June 2015
ABSTRACT
Areca catechu fronds show
higher capability for removal of color and COD and
were utilized as an adsorbent for adsorption process. Areca
catechu fronds activated carbon (AC)
undergoes activation process after carbonization under purified
carbon dioxide and turned as activated carbon. Three variables were
chosen for the preparation optimization which consists of temperature,
activation time and impregnation ratio in order to study the effect
toward the removal of color and COD
from cotton textile mill wastewater. For this study,
the response surface methodology (RSM) was employed. Quadratic model were develop based on
three variables and responses of color and COD.
High values of the coefficient determination, R2 were
obtained from analysis of variance (ANOVA) for both responses. The
optimum Areca catechu fronds activated carbon (AC)
preparation condition was established at temperature 797°C for
1.57 hour of activation time and 2.75 impregnation ratios, corresponding
to the removal of color and COD with 78.83 and 62.41 %, respectively.
Keywords: Activated
carbon; adsorption; Areca catechu; COD;
color
ABSTRAK
Pelepah Areca catechu
mempunyai kebolehan
yang tinggi untuk
menyingkirkan warna dan COD serta
digunakan sebagai bahan penyerap untuk proses penyerapan. Karbon aktif (AC)
Areca catechu
melalui
proses pengaktifan selepas
karbonisasi dibawah karbon dioksida bersih untuk dijadikan
karbon aktif
(AC).
Tiga
pemboleh ubah dipilih
untuk penyediaan
optimum yang terdiri daripada
suhu, masa pengaktifan dan nisbah pemadatan
untuk mengkaji
kesan terhadap penyingkiran warna dan COD daripada
air sisa kilang
tekstil kapas. Dalam kajian ini, kaedah
gerak balas
permukaan (RSM) telah
digunakan. Model
kuadratik dibangunkan berdasarkan kepada tiga pemboleh ubah
serta tindak
balas warna dan
COD.
Nilai
pekali penentu, R2 diperoleh daripada analisis varians (ANOVA)
untuk kedua-dua
tindak balas. Keadaan penyediaan optimum karbon aktif (AC)
pelepah Areca catechu
pada suhu 797°C selama 1.57 jam masa pengaktifan
dan nisbah pemadatan
2.75, sepadan dengan
penyingkiran warna dan COD masing-masing
sebanyak 78.83 dan
62.41%.
Kata kunci: Areca catechu; COD; karbon aktif; penjerapan;
warna
REFERENCES
Jogelekar & May (1987) author,
please provide details.
Ahmad, A.A. & Hameed, B.H. 2009. Reduction of COD and color of dyeing effluent
from a cotton textile mill by adsorption onto bamboo-based activated carbon. Journal Hazardous Materials 172: 1538-1543.
Amina,
A.A., Badie, S.G. & Nady,
A.F. 2008. Removal of methylene blue by carbons derived from
peach stones by H3PO4 activation: Batch and
column studies. Dyes Pigments 76: 282-289.
Anouzla, A., Abrouki, Y., Soubi, S.,
Safi, M. & Rhbal, H. 2009. Colour and COD removal of disperse dye solution by a novel coagulant: Application of
statistical design for the optimization and regression analysis. Journal of
Hazardous Material 166: 1302-1306.
Arami,
M., Limaee, N.Y., Mahmoodi,
N.M. & Tabrizi, N.S. 2005. Equilibrium and kinetics studies for the adsorption of direct and
acid dyes from aqueous solution by soy meal hull. Journal of Colloid
Interface Science 288: 371-376.
Bashir,
M.J.K., Aziz, H.A., Yusoff, M.S. & Adlan, M.N. 2010. Application of response surface methodology (RSM) for optimization
of ammmoniacal nitrogen removal from semi-aerobic
landfill leachate using ion-exchange resin. Desalination 254:
154-161.
Benkli,
Y.E., Can, M.F., Turan, M. & Celik, M.S. 2005. Modification of organo-zeolite surface for the removal of reactive azo dyes
in fixed-bed reactors. Water Resources 39: 487-493.
Gupta,
V.K. & Suhas. 2009.
Application of low-cost adsorbent for dye removal-A review. Journal of
Environmental Management 90: 2313-2342.
Hameed,
B.H. 2009. Spent tea leaves: A new non- conventional and
low-cost adsorbent for removal of basic dye from aqueous solutions. Journal
of Hazardous Materials 161: 753-759.
Hameed,
B.H., Din, A.T.M. & Ahmad, A.I. 2007. Adsorption of
Methylene blue onto bamboo-based carbon: Kinetics and equilibrium
studies. Journal of Hazardous Materials 141: 819-825.
Jogleker, A. & May, A. 1987. Product excellence through
design of experiments. Cereal Foods World 12: 857-868.
Manu,
B. & Chaudhari, S. 2002. Anaerobic decolorisation of simultaned textile wastewater containing azo dyes. Bioresource Technology 82: 225-231.
Muhammad,
M.H., Abdullah, S.R.S., Mohammd, A.B., Rahman, R.A.
& Kadhum, A.A.H. 2013. Application of response surface methodology (RSM) for optimisation of COD, NH3-N and 2,4-DCP removal from recycled paper
wastewater in a pilot-scale granular activated carbon sequencing batch biofilm
reactor (GAC-SBR). Journal of Environmental Management 121: 179-190.
Okeola,
F.O. & Odebunmi, E.O. 2010. Comparison of Freundlich and Langmuir isotherms for
adsorption of methylene blue by agrowaste derived
activated carbon. Advances in Environmental Biology 4: 329-335.
Oller,
I., Malato, S. & Sánchez-Pérez, J.A. 2011. Combination of advanced oxidation process and biological treatments
for wastewater decontamination - A review. Science of the
Total Environment 409: 4141-4166.
Ozdemir,
O., Armagan, B., Turan, M.
& Celik, M.S. 2004. Comparison of the adsorption characteristic of azo-reactive dyes on mezoporous minerals. Dyes Pigments 62:
49-60.
Ponnusami,
V., Vikram, S. & Srivastava, S.N. 2008. Guava (Psidium guajava)
leaf powder: Novel adsorbent for removal of methylene blue from aqueous
solutions. Journal of Hazardous Materials 152: 276-286.
Robinson,
T., Chandran, B. & Nigam, P. 2002. Removal of
dyes from a synthetic textile dye effluent by biosorption on apple pomace and wheat straw. Water Resources 36: 2824-2830.
Sayan,
E. 2006. Optimization and modelling of decolorization and COD reduction of reactive dye solutions
by ultrasound - assisted adsorption. Chemical Engineering Journal 119:
175-181.
Sivaraj,
R., Namasivayam, C. & Kadirvelu,
K. 2001. Orange peels as an adsorbent in the removal of acid
violet 17 (acid dye) from aqueous solutions. Waste Management 21:
105-110.
*Corresponding author; email: muhdnazmi_5757@yahoo.com
|