Sains Malaysiana 44(11)(2015): 1635-1642

 

Isolation and Fractionation of Cellulose Nanocrystals from Kenaf Core

(Pemencilan dan Pemecahan Selulosa Nanohablur daripada Teras Kenaf)

 

HANISAH SYED SULAIMAN, CHI HOONG CHAN, CHIN HUA CHIA*, SARANI ZAKARIA

& SHARIFAH NABIHAH SYED JAAFAR

 

Bioresources and Biorefinery Laboratory, School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Darul Ehsan, Malaysia

 

Received: 28 March 2015/Accepted: 17 June 2015

 

ABSTRACT

In this study, cellulose nanocrystals (CNC) were produced using acid hydrolysis method. Kenaf core was pretreated with 4 wt. % sodium hydroxide (NaOH), followed by bleaching using 1.7 wt. % sodium chlorite (NaClO2) in acetate buffer. The bleached fiber was acid hydrolyzed for 45 and 55 min using 64 wt. % sulfuric acid (H2SO4). The size distribution of the CNC segregated via differential centrifugation with different speed was also investigated. The CNC suspension obtained was centrifuged at 3000, 6000, 9000 and 12000 rpm. The resultant CNC suspension collected was characterized using Fourier transform infrared (FTIR) analysis, X-ray diffraction (XRD) and transmission electron microscopy (TEM). FTIR results showed the progressive removal of non-cellulosic constituents for each subsequent treatment. It also showed that the CNC produced after hydrolysing for 55 min has the highest degree of crystallinity (81.15%). CNC produced from acid hydrolysis process of 45 min have lengths between 50 and 270 nm while CNC produced from acid hydrolysis process of 55 min have length around 40 to 370 nm.

 

Keywords: Acid hydrolysis; cellulose nanocrystal; kenaf core

 

ABSTRAK

Dalam kajian ini, selulosa nanohablur (CNC) dihasilkan menggunakan kaedah hidrolisis asid. Teras kenaf yang digunakan sebagai bahan mentah diprarawat menggunakan 4 bt. % natrium hidroksida (NaOH). Serabut yang telah dirawat kemudian dilunturkan menggunakan natrium klorit (NaClO2). Hidrolisis asid telah dijalankan selama 45 dan 55 minit ke atas serabut yang telah dilunturkan menggunakan 64 bt. % asid sulfurik (H2SO4). Taburan saiz CNC yang dihasilkan dikaji menggunakan teknik pengemparan dengan kelajuan yang berbeza. Ampaian CNC yang terhasil diemparkan pada kelajuan 3000, 6000, 9000 dan 12000 rpm. Ampaian CNC yang terhasil dianalisis menggunakan spektroskopi Fourier inframerah (FTIR), pembelauan sinar-X (XRD) dan mikroskop elektron transmisi (TEM). Keputusan FTIR menunjukkan penyingkiran unsur-unsur bukan selulosa pada setiap rawatan. CNC yang terhasil selepas proses hidrolisis selama 55 minit mempunyai darjah kehabluran yang tertinggi pada 81.15% melalui analisis XRD. CNC yang telah dihidrolisis selama 45 minit mempunyai panjang antara 50 dan 270 nm, manakala CNC yang telah dihidrolisis selama 55 minit mempunyai panjang sekitar 40 ke 370 nm.

 

Kata kunci: Hidrolisis asid; selulosa nanohablur; teras kenaf

REFERENCES

Adamson, W.C. & Bagby, M.O. 1975. Woody core fiber length, cellulose percentage, and yield components of kenaf. Agronomy Journal 67: 57-59.

Alemdar, A. & Sain, M. 2008. Isolation and characterization of nanofibers from agricultural residues - Wheat straw and soyhulls. Bioresource Technology 99: 1664-2167.

Atalla, U.P. & Agarwal, R.H. 2010. Vibrational spectroscopy. In Lignin and Lignans: Advances in Chemistry, edited by Heitner, C., Dimmer, D. & Schimidt, J.A. Boca Raton: CRC Press.

Bai, W., Holbery, J. & Li, K. 2009. A technique for production of nanocrystalline cellulose with a narrow size distribution. Cellulose 16: 455-465.

Beck, S., Bouchard, J. & Berry, R. 2011. Controlling the reflection wavelength of iridescent solid films of nanocrystalline cellulose. Biomacromolecules 12: 167-172.

Borazjani, A. & Diehl, S.V. 1994. Kenaf core as an enhancer of bioremediation, a summary of kenaf production and product development research 1989-1993. Mississippi Agricultural and Forestry Experimental Station Bulletin 1011: 26-27.

Chan, C.H., Chia, C.H., Zakaria, S., Sajab, M.S. & Chin, S.X. 2015. Cellulose nanofibrils: A rapid absorbent for the removal of methylene blue. The Royal Science of Chemistry Advances 5: 18204-18212.

Chan, C.H., Chia, C.H., Zakaria, S., Ahmad, I. & Dufresne, A. 2013. Production and characterization of cellulose and nanocrystalline cellulose from kenaf core wood. Bioresources 8: 785-794.

Chia, C.H., Zakaria, S., Nguyen, K.L. & Abdullah, M. 2008. Utilisation of unbleached kenaf fibers for the preparation of magnetic paper. Industrial Crops and Products 28: 333-339.

Eichhorn, S.J., Dufresne, A., Aranguren, M., Marcovich, N.E., Capadona, J.R. & Rowan, S.J. 2010. Review: Current international research into cellulose nanofibres and nanocomposites. Journal of Material Science 45: 1-33.

Elazzouri-Hafraoui, S., Nishiyama, Y., Putaux, J-L., Huex, L., Dubreuil, F. & Rochas, C. 2008. The shape and size distribution of crystalline nanoparticles prepared by acid hydrolysis of native cellulose. Biomacromolecules 9: 57-65.

Hasfalina, C.M., Maryam, R.Z., Luqman, C.A. & Rashid, M. 2010. The potential use of kenaf as a bioadsorbent for the removal of Copper and Nickel from single and binary aqueous solution. Journal of Natural Fibers 7: 267-275.

Helbert, W., Cavaille, J.Y. & Dufresne, A. 1996. Thermoplastic nanocomposites filled with wheat straw cellulose whiskers. Part I: Processing and mechanical behavior. Polymer Composites 17: 604-611.

Hirai, A., Inui, O., Horri, F. & Tsuji, M. 2009. Phase separation behavior in aqueous suspension of bacterial cellulose nanocrystals perpared by sulphuris acid treatment. Langmuir 25: 497-502.

Iammarino, M., Gyabaath, J.N., Chandler, M., Roush, D. & Goklen, K. 2007. Impact of cell density and viability on the primary classification of mammalian cell broth. BioProcess International 5(10): 38-50.

Johar, N., Ahmad, I. & Dufresne, A. 2012. Extraction, preparation and characterization of cellulose fibers and nanocrystals from rice husk. Industrial Crops and Products 37: 93-99.

Jonoobi, M., Harun, J., Tahir, P.M., Zini, L.H., Azry, S.S. & Makinejad, M.D. 2010. Characteristics of nanofibers extracted from kenaf core. Bioresources 5: 2556-2566.

Kisku, S.K., Dash, S. & Swain, S.K. 2014. Dispersion of SiC nanoparticles in cellulose for study of tensile, thermal and oxygen barrier properties. Carbohydrates Polymer 99: 306- 310.

Lima, M.M.D.S. & Borsali, R. 2004. Rodlike cellulose microcrystals: Structure, properties and applications. Macromoleculer Rapid Communications 25: 771-787.

Maiti, S., Jayaramudu, J., Das, K., Reddy, S.M., Sadiku, R., Ray, S.S. & Liu, D. 2013. Preparation and characterization of nano-cellulose with new shape from different precursor. Carbohydrates Polymer 98: 562-567.

Moran, J., Alvarez, V., Cyras, V. & Vazquez, A. 2008. Extraction of cellulose and preparation of nanocellulose from sisal fibers. Cellulose 5: 149-159.

Neto, W.P.F., Silvério, H.A., Dantas, N.O. & Pasquini, D. 2013. Extraction and characterization of cellulose nanocrystals from agro-industrial residue - Soy hulls. Industrial Crops and Products 42: 480-488.

Nishino, T., Hirao, K., Kotera, M., Nakamae, K. & Inagaki, H. 2003. Kenaf reinforced biodegradable composite. Composite Science and Technology 63: 1281-1286.

Peng, B.I., Dhar, N., Liu, H.L. & Tam, K.C. 2011. Chemistry and applications of nanocrystalline cellulose and its derivatives: A nanotechnology perspective. Canadian Journal of Chemical Engineering 89: 1191-1206.

Periasamy, A., Murugand, S. & Palaniswamy, M. 2009. Vibration studies of Na2SO4, K2SO4, NaHSO4 and KHSO4 crystals. Rasayan Journal of Chemistry 4: 981-989.

Ruiz, M.M., Cavaille, J.Y., Dufresne, A., Gerard, J.F. & Graillat, C. 2000. Processing and characterization of new thermoset nanocomposites based on cellulose whiskers. Composite Interfaces 7: 117-131.

Sajab, M.S., Chia, C.H., Zakaria, S., Jani, S.M., Ayob, M.K., Chee, K.L., Khiew, P.S. & Chiu, W.S. 2011. Citric acid modified kenaf core fibres for removal of methylene blue from aqueous solution. Bioresource Technology 102: 7237-7243.

Sajab, M.S., Chia, C.H., Zakaria, S., Jani, S.M., Khiew, P.S. & Chiu, W.S. 2010. Removal of copper (II) Ions from aqueous solution using alkali treated kenaf core fibres. Adsorption Science & Technology 28: 377-386.

Sellers, T.J., Miller, G.D. & Fuller, M.J. 1994. Kenaf core as a board raw material. Mississippi Agricultural and Forestry Experiment Station Bulletin 1011: 28-29.

Seo, J.M., Cho, D. & Park, W.H. 2008. Alkali treatment effect of kenaf fibers on the characteristics of kenaf/PLA biocomposites. Journal of Adhesive Interface 9: 1-11.

Siqueira, G., Bras, J. & Dufresne, A. 2010. Cellulosic bionanocomposites: A review of preparation, properties and applications. Polymers 2: 728-765.

Yan, T., Xu, Y. & Yu, C. 2009. The isolation and characterization of lignin of kenaf fiber. Journal of Applied Polymer Science 114: 1896-1901.

Yang, H., Yan, R., Cehn, H., Lee, D.H. & Zheng, C. 2007. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86: 1781-1788.

Yu, M.J., Yang, R., Huang, L., Cao, X., Yang, F. & Liu, D. 2012. Preparation and characterization of bamboo nanocrystalline cellulose. Bioresources 7: 1802-1812.

 

 

*Corresponding author; email: chia@ukm.edu.my

 

previous