Sains Malaysiana 44(11)(2015):
1635-1642
Isolation and Fractionation of Cellulose Nanocrystals from Kenaf Core
(Pemencilan
dan Pemecahan
Selulosa Nanohablur
daripada Teras Kenaf)
HANISAH SYED SULAIMAN, CHI
HOONG CHAN, CHIN HUA CHIA*, SARANI ZAKARIA
& SHARIFAH NABIHAH SYED JAAFAR
Bioresources and Biorefinery Laboratory, School of Applied Physics, Faculty
of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi,
Selangor Darul Ehsan, Malaysia
Received:
28 March 2015/Accepted: 17 June 2015
ABSTRACT
In this study,
cellulose nanocrystals (CNC) were produced using acid
hydrolysis method. Kenaf core was pretreated with 4
wt. % sodium hydroxide (NaOH), followed by bleaching
using 1.7 wt. % sodium chlorite (NaClO2)
in acetate buffer. The bleached fiber was acid hydrolyzed for 45 and 55 min
using 64 wt. % sulfuric acid (H2SO4).
The size distribution of the CNC segregated via differential
centrifugation with different speed was also investigated. The CNC suspension
obtained was centrifuged at 3000, 6000, 9000 and 12000 rpm. The resultant CNC suspension
collected was characterized using Fourier transform infrared (FTIR)
analysis, X-ray diffraction (XRD) and transmission electron
microscopy (TEM). FTIR results showed the
progressive removal of non-cellulosic constituents for each subsequent
treatment. It also showed that the CNC produced after hydrolysing for 55 min has the highest degree of
crystallinity (81.15%). CNC produced from acid hydrolysis
process of 45 min have lengths between 50 and 270 nm while CNC produced
from acid hydrolysis process of 55 min have length around 40 to 370 nm.
Keywords: Acid
hydrolysis; cellulose nanocrystal; kenaf core
ABSTRAK
Dalam kajian ini,
selulosa nanohablur (CNC)
dihasilkan menggunakan
kaedah hidrolisis asid. Teras kenaf yang digunakan sebagai bahan mentah diprarawat
menggunakan 4 bt.
% natrium hidroksida
(NaOH). Serabut yang telah
dirawat kemudian
dilunturkan menggunakan natrium klorit (NaClO2).
Hidrolisis asid
telah dijalankan selama 45 dan 55 minit ke atas
serabut yang telah dilunturkan
menggunakan 64 bt.
% asid sulfurik
(H2SO4).
Taburan
saiz CNC yang dihasilkan
dikaji menggunakan
teknik pengemparan dengan kelajuan yang berbeza. Ampaian CNC yang terhasil diemparkan pada kelajuan 3000, 6000, 9000 dan
12000 rpm. Ampaian CNC yang terhasil dianalisis menggunakan spektroskopi Fourier inframerah
(FTIR),
pembelauan sinar-X
(XRD)
dan mikroskop
elektron transmisi (TEM).
Keputusan
FTIR
menunjukkan penyingkiran
unsur-unsur bukan
selulosa pada setiap
rawatan. CNC yang
terhasil selepas
proses hidrolisis selama 55 minit mempunyai darjah kehabluran yang tertinggi pada 81.15% melalui analisis XRD.
CNC
yang telah dihidrolisis
selama 45 minit mempunyai panjang antara 50 dan 270 nm, manakala CNC yang telah
dihidrolisis selama
55 minit mempunyai panjang sekitar 40 ke 370 nm.
Kata kunci: Hidrolisis asid; selulosa nanohablur; teras kenaf
REFERENCES
Adamson, W.C. & Bagby, M.O. 1975. Woody core fiber length, cellulose percentage, and yield
components of kenaf. Agronomy Journal 67:
57-59.
Alemdar, A. & Sain, M. 2008. Isolation and characterization of nanofibers
from agricultural residues - Wheat straw and soyhulls. Bioresource Technology 99: 1664-2167.
Atalla, U.P. & Agarwal, R.H. 2010. Vibrational spectroscopy. In Lignin
and Lignans: Advances in Chemistry, edited
by Heitner, C., Dimmer, D. & Schimidt,
J.A. Boca Raton: CRC Press.
Bai, W., Holbery, J. & Li, K. 2009. A technique for production of nanocrystalline cellulose with a narrow size distribution. Cellulose 16: 455-465.
Beck, S., Bouchard, J. & Berry, R. 2011. Controlling the reflection wavelength of
iridescent solid films of nanocrystalline cellulose. Biomacromolecules 12: 167-172.
Borazjani, A. & Diehl, S.V. 1994. Kenaf core as an
enhancer of bioremediation, a summary of kenaf production and product development research 1989-1993. Mississippi
Agricultural and Forestry Experimental Station Bulletin 1011: 26-27.
Chan, C.H., Chia, C.H., Zakaria, S., Sajab, M.S. & Chin, S.X. 2015. Cellulose nanofibrils: A rapid absorbent for the removal of methylene
blue. The Royal Science of Chemistry Advances 5: 18204-18212.
Chan, C.H., Chia, C.H., Zakaria, S.,
Ahmad, I. & Dufresne, A. 2013. Production and characterization of cellulose
and nanocrystalline cellulose from kenaf core wood. Bioresources 8: 785-794.
Chia, C.H., Zakaria, S., Nguyen, K.L.
& Abdullah, M. 2008. Utilisation of unbleached kenaf fibers for the preparation of magnetic paper. Industrial
Crops and Products 28: 333-339.
Eichhorn, S.J., Dufresne, A., Aranguren, M., Marcovich, N.E., Capadona, J.R.
& Rowan, S.J. 2010. Review: Current
international research into cellulose nanofibres and
nanocomposites. Journal of Material Science 45: 1-33.
Elazzouri-Hafraoui, S., Nishiyama, Y., Putaux,
J-L., Huex, L., Dubreuil,
F. & Rochas, C. 2008. The shape and size distribution of crystalline
nanoparticles prepared by acid hydrolysis of native cellulose. Biomacromolecules 9: 57-65.
Hasfalina, C.M., Maryam, R.Z., Luqman, C.A. &
Rashid, M. 2010. The
potential use of kenaf as a bioadsorbent for the removal of Copper and Nickel from single and binary aqueous solution. Journal of Natural Fibers 7: 267-275.
Helbert, W., Cavaille, J.Y. & Dufresne, A.
1996. Thermoplastic nanocomposites filled with wheat straw cellulose
whiskers. Part I: Processing and mechanical behavior. Polymer Composites 17:
604-611.
Hirai, A., Inui, O., Horri, F. &
Tsuji, M. 2009. Phase separation behavior
in aqueous suspension of bacterial cellulose nanocrystals perpared by sulphuris acid treatment. Langmuir 25:
497-502.
Iammarino, M., Gyabaath, J.N., Chandler, M.,
Roush, D. & Goklen, K. 2007. Impact of cell density and viability on the
primary classification of mammalian cell broth. BioProcess International 5(10): 38-50.
Johar, N., Ahmad, I. & Dufresne, A. 2012. Extraction, preparation and characterization of cellulose fibers
and nanocrystals from rice husk. Industrial Crops and Products 37:
93-99.
Jonoobi, M., Harun, J., Tahir, P.M., Zini,
L.H., Azry, S.S. & Makinejad,
M.D. 2010. Characteristics of nanofibers extracted
from kenaf core. Bioresources 5: 2556-2566.
Kisku, S.K., Dash, S. & Swain, S.K. 2014. Dispersion of SiC nanoparticles in cellulose for study of tensile, thermal and oxygen barrier
properties. Carbohydrates Polymer 99: 306- 310.
Lima, M.M.D.S. & Borsali, R. 2004. Rodlike cellulose microcrystals:
Structure, properties and applications. Macromoleculer Rapid Communications 25: 771-787.
Maiti, S., Jayaramudu, J., Das, K., Reddy,
S.M., Sadiku, R., Ray, S.S. & Liu, D. 2013. Preparation and characterization of nano-cellulose with new shape from different precursor. Carbohydrates Polymer 98: 562-567.
Moran, J., Alvarez, V., Cyras, V. &
Vazquez, A. 2008. Extraction
of cellulose and preparation of nanocellulose from
sisal fibers. Cellulose 5: 149-159.
Neto, W.P.F., Silvério, H.A., Dantas, N.O. & Pasquini, D.
2013. Extraction and characterization of cellulose
nanocrystals from agro-industrial residue - Soy hulls. Industrial
Crops and Products 42: 480-488.
Nishino, T., Hirao, K., Kotera, M., Nakamae, K. &
Inagaki, H. 2003. Kenaf reinforced biodegradable composite. Composite Science and Technology 63:
1281-1286.
Peng, B.I., Dhar, N., Liu, H.L. &
Tam, K.C. 2011. Chemistry and applications of nanocrystalline cellulose and its derivatives: A nanotechnology perspective. Canadian
Journal of Chemical Engineering 89: 1191-1206.
Periasamy, A., Murugand, S. & Palaniswamy, M. 2009. Vibration studies of Na2SO4, K2SO4, NaHSO4 and KHSO4 crystals. Rasayan Journal of Chemistry 4: 981-989.
Ruiz,
M.M., Cavaille, J.Y., Dufresne, A., Gerard, J.F.
& Graillat, C. 2000. Processing and characterization of new thermoset nanocomposites based on
cellulose whiskers. Composite Interfaces 7: 117-131.
Sajab,
M.S., Chia, C.H., Zakaria, S., Jani, S.M., Ayob, M.K., Chee, K.L., Khiew,
P.S. & Chiu, W.S. 2011. Citric acid modified kenaf core fibres for removal of methylene blue from
aqueous solution. Bioresource Technology 102:
7237-7243.
Sajab,
M.S., Chia, C.H., Zakaria, S., Jani, S.M., Khiew, P.S. & Chiu, W.S. 2010. Removal of copper (II)
Ions from aqueous solution using alkali treated kenaf core fibres. Adsorption Science & Technology 28:
377-386.
Sellers,
T.J., Miller, G.D. & Fuller, M.J. 1994. Kenaf core as a
board raw material. Mississippi Agricultural and Forestry Experiment
Station Bulletin 1011: 28-29.
Seo,
J.M., Cho, D. & Park, W.H. 2008. Alkali treatment effect of kenaf fibers
on the characteristics of kenaf/PLA biocomposites. Journal of Adhesive Interface 9:
1-11.
Siqueira,
G., Bras, J. & Dufresne, A. 2010. Cellulosic bionanocomposites: A review of preparation, properties and
applications. Polymers 2: 728-765.
Yan,
T., Xu, Y. & Yu, C. 2009. The isolation
and characterization of lignin of kenaf fiber. Journal of Applied Polymer Science 114: 1896-1901.
Yang,
H., Yan, R., Cehn, H., Lee, D.H. & Zheng, C.
2007. Characteristics of hemicellulose, cellulose and lignin
pyrolysis. Fuel 86: 1781-1788.
Yu,
M.J., Yang, R., Huang, L., Cao, X., Yang, F. & Liu, D. 2012. Preparation and characterization of bamboo nanocrystalline cellulose. Bioresources 7:
1802-1812.
*Corresponding author; email: chia@ukm.edu.my |