Sains Malaysiana 44(12)(2015): 1729–1738
A Study on Development of Automation Diagnosis of Liquid Based Cytology
(Suatu Kajian Pembangunan Diagnosis
Automasi Sitologi berasaskan Cecair)
SEONG-HYUN
KIM1, HAN-YEONG
OH2 & DONG-WOOK
KIM*1,3
1Division of Biomedical Engineering, Chonbuk National
University, 567 Baekje-daero, Deokjin-gu
Jeonju-si, Jeonbuk, South Korea
2Department of Healthcare Engineering, Chonbuk National
University, 567 Baekje-daero, Deokjin-gu
Jeonju-si, Jeonbuk, South Korea
3Research Center of Healthcare & Welfare Instrument for
the Aged, Chonbuk National University
567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeonbuk, South
Korea
Received: 2 September 2014/Accepted: 23 June 2015
ABSTRACT
Cervical cancer afflicts women worldwide. The patients’ mortality
with cancer has been increased by changing to westernized dietary habit and
lifestyle. In order to detect early cervical cancer, a liquid-based cytology (LBC)
was used to examine the exfoliated cells collected from the cervix. This
procedure helps to decrease the mortality rate. However, this test mostly
involves manual examination by the pathologists. This procedure needs to
develop more efficient tool in detecting cervical cancer which rate kept
increasing. As such, this study was designed to develop some methods to
increase the effectiveness of LBC. The diagnosis algorithm
was also established to diagnose the processed cell images via an imaging
process algorithm based on the diagnosis criteria. A cell diagnosis program
based on GUI, combined with the imaging process and the diagnosis
algorithms were developed to automate the test process. The results of this
studies showed that this new program can be used for effective diagnosis of
cervical cancer. Moreover, it was deemed to increase the precision and accuracy
of diagnosis and save patient time.
Keywords: Automation diagnosis; diagnosis algorithm; image
processing algorithm; liquid based cytology (LBC);
uterine cervical cancer
ABSTRAK
Kanser pangkal rahim menyerang wanita di seluruh dunia. Kematian
pesakit kanser telah meningkat akibat penukaran tabiat pemakanan dan gaya hidup
yang kebaratan. Untuk pengesanan awal barah pangkal rahim, sitologi berasaskan
cecair (LBC) digunakan untuk mengkaji sel-sel yang dikumpul
daripada serviks. Prosedur ini membantu mengurangkan kadar kematian. Walau
bagaimanapun, ujian ini kebanyakannya melibatkan pemeriksaan secara manual oleh
ahli patologi. Prosedur ini perlu membangunkan alat yang lebih cekap untuk
mengesan kanser pangkal rahim kerana kadarnya yang semakin meningkat. Oleh yang
demikian, kajian ini telah direka untuk mencadangkan beberapa kaedah untuk
meningkatkan keberkesanan LBC. Diagnosis algoritma juga
dibangunkan untuk mendiagnosis proses imej sel melalui suatu proses pengimejan
algoritma berdasarkan kriteria diagnosis. Suatu program sel diagnosis
berdasarkan GUI, digabungkan dengan proses pengimejan dan diagnosis
algoritma telah dibangunkan untuk mengautomasikan proses ujian. Keputusan
kajian ini menunjukkan bahawa program baru ini boleh digunakan untuk diagnosis
kanser pangkal rahim dengan berkesan. Selain itu, ia dilihat boleh meningkatkan
kepersisan dan ketepatan diagnosis dan menjimatkan masa pesakit.
Kata kunci: Algoritma
pemprosesan imej; diagnosis algoritma; diagnosis automasi; kanser pangkal
rahim; sitologi berasaskan cecair (LBC)
REFERENCES
h t t p : / /www. c a n c e r. g o . k r /mb s / c a n c e
r / s u b v i ew. jsp?id=cancer_020302000 000.
http://www.index.go.kr/potal/main/EachDtlPageDetail.do?idx_
cd=1012.
Abulafia, O., Pezzullo, J.C. & Sherer, D.M. 2003.
Performance of ThinPrep liquid-based cervical cytology in comparison with
conventionally prepared Papanicolaou smears: A quantitative survey. Gynecologic
Oncology 90(1): 137-144.
Bracamontes, E.A.M., Rosas, M.E.M., Velasco, M.M.M., Reyes,
H.L.M., Sandoval, J.R.M. & Avila, H.C. 2012. Implementation of Hough
transform for fruit image segmentation. Procedia Engineering 35:
230-239.
Bumford, P. 2003. Empirical comparison of cell segmentation
algorithms using an annotated dataset. Image Processing 2: 1073-1076.
Chankong, T., Umpon, N.T. & Auephanwiriyakul, S. 2014.
Automatic cervical cell segmentation and classification in pap smears. Computer
Methods and Programs in Bio Medicine 113(2): 539-556.
Chen, Y., Adjouadi, M., Han, C., Wang, J., Barreto, A.,
Rishe, N. & Andrian, J. 2010. A highly accurate and computationally
efficient approach for unconstrained iris segmentation. Image and Vision
Computing 28(2): 261-269.
Choi, Y.D., Han, C.W., Kim, J.H., Oh, I.J., Lee, J.S., Nam,
J.H., Juhn, S.W. & Park, C.S. 2008. Effectiveness of sputum cytology using
ThinPrep method for evaluation of lung cancer. Diagnostic Cytopathology 36(3),
167-171.
Chung, K.L., Lin, Z.W., Huang, S.T., Huang, Y.H. & Liao,
H.Y.M. 2010. New orientation-based elimination approach for accurate
line-detection. Pattern Recognition Letters 31(1): 11-19.
De, S., Stanley, R.J., Lu, C., Long, R., Antani, S., Thoma,
G. & Zuna, R. 2013. A fusion-based approach for uterine cervical cancer
histology image classification. Computerized Medical Imaging and Graphics 37(7):
475-487.
Harandi, N.M., Sadri, S., Moghaddam, N.A. & Amirfattahi,
R. 2010. An automated method for segmentation of epithelial cervical cells in
images of ThinPrep. Journal of Medical Systems 34(6): 1043-1058.
Hausen, H.Z. 1977. Human papillomaviruses and their possible
role in squamous cell carcinomas. Current Topic Microbiology Immunology 78:
1-30.
Hoda, R.S. & Hoda, S.A. 2006. Fundamentals of Pap
Test Cytology. New York: Humana Press.
Hussin, R., Juhari, M.R., Kang, N.W., Ismail, R.C. &
Kamarudin, A. 2012. Digital image processing techniques for object detection
from complex background image. Procedia Engineering 41: 340-344.
Hwang, I.S., Kang, Y.N., Kwon, K.Y., Kwon, S.Y., Kim, S.P.,
Lee, S.S., Jung, H.R. & Choe, M.S. 2011. Comparative study of relative
value for diagnostic procedure of surgical pathology in Korea and United
States. The Korean Journal of Pathology 45(1): 9-14.
Jang, J.J., Kim, J.S., Cho, K.J., Khang, S.K., Nam, J.H.
& Gong, G.Y. 2002. A comparison of autocyte PREP with matched conventional
smear in cervicovaginal cytology. The Korean Journal of Cytopathology 13(1):
8-13.
Jeon, Y.K., Kim, O.R., Park, K.W., Kang, S.B. & Park,
I.A. 2004. Liquid-based cytology using monoprep 2 system in cervicovaginal
cytology: Comparative study with conventional pap smear and histology. The
Korean Journal of Cytopathology 15(l): 33-39.
Jeong, Y.K. & Baek, J.S. 2008. Developing a GUI-based
standalone application of matlab program for windows. Journal of Korean Data
and Information Science Society 19(2): 519-529.
Jiang, L. 2012. Efficient randomized Hough transform for
circle detection using novel probability sampling and feature points. Optik 123(20):
1834-1840.
Joo, S.Y., Yang, Y.S., Moon, W.K. & Kim, H.C. 2004.
Computer-aided diagnosis of solid breast nodules: Use of an artificial neural
network based on multiple sonographic features. IEEE Transactions on Medical
Imaging 23(10): 1292-1300.
Kim, Y.T. 2007. Causes and diagnoses of cervical cancer. Journal
of the Korean Medical Association 50(9): 769-777.
Koh, J.S., Cho, S.Y., Ha, H.J., Kim, J.S. & Shin, M.S.
2007. Cytologic evaluation of CellPrep® liquid-based cytology in
cervicovaginal, body fluid, and urine specimens. The Korean Journal of
Cytopathology 18(1): 29-35.
Lee, K.C., Jung, C.K., Lee, A.H., Jung, E.S., Choi, Y.J.,
Park, J.S. & Lee, K.Y. 2007. A comparision of surepath™ liquid-based smear
with a conventional smear for cervicovaginal cytology-with reference to a
histological diagnosis. The Korean Journal of Cytopathology 18(1):
20-28.
Lee, S., Park, J.H., Do, S.I., Kim, Y.W., Lee, J.H., Chang,
S.G. & Park, Y.K. 2007. Diagnostic value of urine cytology in 236 cases;
Comparison of liquid-based preparation and conventional cytospin method. The
Korean Journal of Cytopathology 18(2): 119-125.
Li, B., Peng, K., Ying, X. & Zha, H. 2012. Vanishing
point detection using cascaded 1D Hough transform from single images. Pattern
Recognition Letters 33(1): 1-8.
Li, K., Lu, Z., Liu, W. & Yin, J. 2012. Cytoplasm and
nucleus segmentation in cervical smear images using radiating GVF snake. Pattern
Recognition 45(4): 1255-1264.
Lin, Z. & Yu, H. 2011. The pupil location based on the
OTSU method and Hough transform. Procedia Environmental Sciences 8:
352-356.
Linder, J. 1998. Recent advances in thin-layer cytology. Diagnostic
Cytopathology 18(1): 24-32.
Maksem, J.A., Dhanwada, V., Trueblood, J.E., Weidmann, J.,
Kane, B., Bolick, D.R., Bedrossian, D.F.I., Kurtycz, C.W.M. & Stewart, J.
2006. Testing automated liquid-based cytology samples with a manual
liquid-based cytology method using residual cell suspensions from 500 ThinPrep
cases. Diagnostic Cytopathology 34(6): 391-396.
Mat-Isa, N.A., Mashor, M.Y. & Othman, N.H. 2008. An
automated cervical pre-cancerous diagnostic system. Artificial Intelligence
in Medicine 42: 1-11.
Park, J.M., Lee, J.G. & Suh, I.S. 2005. Clinical
efficacy of manual liquid-based cervicovaginal cytology preparation:
Compratative study with conventional papanicolaou test. The Korean Journal
of Cytopathology 16(1): 10-17.
Plissiti, M.E. & Nikou, C. 2011. Automated detection of
cell nuclei in pap smear images using morphological reconstruction and
clustering. IEEE Transactions on Information Technology in Biomedicine 15(2):
233-241.
Plissiti, M.E., Nikou, C. & Charchanti, A. 2011.
Combining shape, texture and intensity features for cell nuclei extraction in
pap smear images. Pattern Recognition Letters 32(6): 838-853.
Prasad, D.K., Leung, M.H. & Cho, S.Y. 2012. Edge
curvature and convexity based ellipse detection method. Pattern Recognition 45(9):
3204-3221.
Schledermann, D., Ejersbo, D. & Hoelund, B. 2006.
Improvement of diagnostic accuracy and screening conditions with liquid-based
cytology. Diagnostic Cytopathology 34(11): 780-785.
Zhang, L., Kong, H., Chin, C.T., Liu, S., Chen, Z., Wanga,
T. & Chen, S. 2014. Segmentation of cytoplasm and nuclei of abnormal cells
in cervicalcytology using global and local graph cuts. Computerized Medical
Imaging and Graphics 38(5): 369-380.
*Corresponding
author; email: biomed@jbnu.ac.kr
|